2011-09-30 Самодельный ветряк с аксиальным генератором на неодимовых магнитах


Ветряк с аксиальным генератором на неодимовых магнитах

Наиболее сильными магнитами, обладающими оптимальными параметрами для использования в конструкции генератора, являются неодимовые магниты. Они несколько дороже обычных, но превосходят их многократно и дают возможность создать мощное устройство при относительно компактном размере.

Принципиального отличия в конструкции не имеется. Неодимовые магниты изготавливаются в различных формфакторах, позволяющих выбрать наиболее удобный для себя вариант — тонкие продолговатые брусочки, форма таблетки, цилиндры и т.д. если используется металлический ротор, то приклеивать магниты необязательно, они сами по себе с усилием прикрепляются к основанию. Остается лишь залить их эпоксидкой для защиты от коррозии.

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Как сделать вечный двигатель

Самодельные генераторы на неодимовых магнитах в основном однотипны по принципу действия. Стандартным уже вариантом является аксиальный тип.

За его основу берется ступица из автомобиля с тормозными дисками. Такая база станет надежной и мощной.

При решении ее использовать ступицу следует полностью разобрать и проверить, достаточно ли там смазки, а при необходимости очистить ржавчину. Тогда готовый прибор будет приятно покрасить, и он приобретет «домашний», ухоженный вид.

На роторные диски наклеивают магниты. Автор конструкции, представленной на фото в статье, взял двадцать штук размером 25*8 миллиметров. Можно использовать разное количество полюсов.

В однофазном приборе полюсы должны иметь равное количество с количеством магнитов. В трехфазном должно соблюдаться соотношение двух к трем или четырех к трем. Магниты размещают с чередованием полюсов. Они должны быть точно расположены. Для этого можно начертить на бумаге шаблон, вырезать его и точно перенести на диск.

Чтобы полюсы не перепутать, маркером делают пометки. Для этого магниты подносят одной стороной: ту, что притягивает, обозначают знаком «+», а ту, что отталкивает, — «-». Магниты должны притягиваться, то есть те, что расположены друг напротив друга, должны иметь разные полюсы.

Обычно используется суперклей или подобный ему, а после наклейки заливают еще эпоксидной смолой для увеличения прочности, предварительно сделав «бордюрчики», чтобы она не вытекла.

Тихоходный генератор на постоянных магнитах своими руками

Секрет магнитного генератора Перендева. Делаем своими руками

Всем доброго вечера, мы с отцом уже давно ломаем голову над знаменитым двигателем Perendev перепробовали много вариантов, был у нас один двигатель суть его в том чтобы на роторе разместить магниты как можно плотнее и все с одним полюсом наружу а на статоре разместить три полюса магнитов которые будут сдвинуты друг от друга (во общем то что Perendev сделал за счет трех дисков):

Вот статья неплохая по поводу принципа роботы двигателя Perendev которая дает ответы на многие вопросы.

При внимательном изучении патента перендева (ссылка на патент находится на российский странице, вход с немецкого сайта) обнаружился рисунок собственно «единичного элемента», то-бишь экранированного магнита.

Судя по чертежу, цилиндрический магнит находится внутри не просто толстостенного железного цилиндра, а внутри цилиндра, на торце которого добавлено кольцо металла.

Таким образом края магнита, (с максимальными магнитными потоками) спрятаны в железо. Для взаимодействия оставлена только площадка в .

Видимо, для проверки принципа достаточно промоделировать несколько вариантов единичного элемента — учесть геометрию цилиндра, изображенного в патенте, и изготовить его из нержавейки (как утверждает автор) и из обычного магнитомягкого железа. Скорее всего, сам магнит должен удерживаться внутри цилиндра неким кольцом из изолятора, чтобы не соприкасался с железом, иначе пойдет намагничивание цилиндра со всеми последствиями. Что касается графита, согласно утверждению автора, то я сомневаюсь, чтобы сочетание нержавейки с графитом в любых геометрических положениях смогло хотя бы частично экранировать магнит.

Однако, можно попробовать проверить и это. Я проверил с обычным цилиндром из нержавейки с таблеткой внутри, экранирования нету.

——————————— В интервью Брэди нашел фразу, что все магниты срезаны на конус, изолированы прослойкой и вставлены в экранирующие цилиндры.

Основная идея в следующем: Поясню без рисунка. На пальцах. Возьмем отрезок времени 5 секунд, (для простоты). на цилиндрическом роторе находится скажем 9 или 11 магнитов. а на статоре соответственно 8 или 10. в первую секунду 1й магнит ротора находится в мертвой точке. На него действует максимальная сила противодействия движению =х. В эту-же секунду магнит 2 уже прошел свою мертвую точку,и тянет с некоторым плюсовым усилием . соответственно №3 тоже находится после мертвой точки, и тоже в плюсе. и так до №9.

во вторую секунду в мертвую точку входит №2, а все остальные в эту же вторую секунду (или любую другую минимальную единицу времени) тянут с положительным усилием, компенсируя мертвую точку.

Смысл в том, что при разном количестве магнитов в статоре и роторе, их расположение должно быть таким, чтобы в ЛЮБОЙ момент времени в МТ находился ТОЛЬКО ОДИН магнит, а все остальные, количество которых не может быть меньше какого-то определенного чмсла, должны своим суммарным тяговым усилием компенсировать прохождение этой единичной мертвой точки. Количество магнитов нужно подсчитывать в каждом конкретном случае отдельно. Несомненно одно, построить модель на 3-5 магнитах не получится по определению. Количество роторных должно быть таким, чтобы сумма находящихся в разном положении магнитов ротора относительно статора была БОЛЬШЕ усилия мертвой точки для единичного магнита, или, если угодно, пары ротор-статор, зависших в МТ.

Нужно просто понять этот принцип. Три кольца прототипа у Perendev создаст только повышенную мощность, для раскрутки генератора в 20 квт (видео). Но каждое отдельно взятое кольцо, вернее- пара, ротор-статор имеют как раз такой расклад сил.

Безусловно, нужно очень точно позиционировать магниты на кольце, чтобы соблюсти это условие. а добавки Perendev в виде изолирующих железных цилиндров просто убирают паразинтые влияния магнитов друг на друга, оставляя в голом виде этот самый принцим, поскольку при подходе к МТ , имея экран, магнит ротора взаимодействует только со своим статорным магнитом, не чувствуя паразитных полей соседних магнитов статора и ротора. Т.е принцип в чистом виде. Совершенно понятно, что такие конструкции возможны только в цилиндрических формах, однако проверить правильность этого моего утверждения можно и на линейной модели. Для этого расстояния между магнитами ротора на линейке должны быть больше на какую-то величину, чем расстояние между магнитами статора на другой линейке. Но ни в коем случае НЕ равными. Для примера можно разместить на линейном статоре 30 магнитов с интервалом 10 мм, а на роторной линейке штук 9-11 с интервалом в 11 мм.

Переменный однофазный и трёхфазный электрический ток

Электрический ток — направленное движение электрически заряженных частиц под воздействием электрического поля (Приложение, рис. 1). Такими частицами могут являться: в проводниках – электроны, в электролитах – ионы (катионы и анионы). В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля. Током проводимости называют количество электричества, протекающего за единицу времени через поперечное сечение проводника:

i=q/t,

где i – ток (А), q = 1,6·109 — заряд электрона (Кл), t — время (с).

Но такое выражение справедливо только для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени:

i(t)= dq/dt.

Электрический ток называется переменным, если он в течение определённого времени меняет свое направление и непрерывно изменяется по своей величине. Значение переменного тока, изменяется по синусоидальному закону (Приложение, рис. 2):

i = Im sin (2πft),

где; i – мгновенное значение тока, Im – амплитудное или наибольшее значение тока, f – значение частоты переменного тока, t – время.

Широко используется переменный ток благодаря тому, что электроэнергия переменного тока технически просто и экономно может быть преобразована из энергии более низкого напряжения в энергию более высокого напряжения и наоборот. Это свойство переменного тока позволяет передавать электроэнергию по проводам на большие расстояния.

Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется каким-либо энергетическим источником.

Переменный однофазный электрический ток имеет следующие основные характеристики:

f – частота переменного тока определяет количество циклов или периодов в единицу времени. За единицу измерения частоты переменного тока принят Герц (Гц) (1Гц = 10-3кГц = 10-6мГц);

Τ – период – время одного полного изменения переменной величины (если в 1 секунду происходит 1 период Τ, то частота f = 1 Гц);

ω – угловая скорость равная — ω=2πf;

Сила тока в отдельные моменты при изменении его по синусоиде носит название мгновенных значений тока. Наибольшее по величине мгновенное значение однофазного переменного тока при изменении его по синусоиде называется амплитудой. В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока. Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, электродвижущие силы одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода (φ=2π/3) (Приложение, рис. 3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током.

Генераторы на магнитах, работающие без топлива

Всё большую популярность набирают генераторы, которые способны вырабатывать электричество без использования бензина или дизельного топлива, так как они гораздо экономичнее. Также эти устройства не выделяют токсичных веществ и не загрязняют окружающий мир. Генераторы на магнитах, работающие без топлива, применяют не только в домашнем хозяйстве, но и в некоторых отраслях промышленности.

Бестопливные генераторы

Многие государства сейчас делают упор на разработку альтернативных источников энергии, а также на экономию полезных ископаемых. Достигается это благодаря использованию магнитных электрогенераторов. Принцип их работы заключается в элементарных законах физики. Наиболее успешными видами устройств считаются такие:

  1. Бестопливный генератор на магнитах Адамса. На сегодняшний день является наиболее популярным магнитным двигателем. У него довольно простая конструкция, но при этом очень высокий коэффициент полезного действия.
  2. Мотор Дудышева. В основе его работы применяется магнитный ток, который видоизменяется в электрический импульс.
  3. Соленоидальный мотор Дудышева. В его конструкцию включён магнитный ротор. Наибольшую эффективность показывает на малых мощностях.
  4. Двигатель Минато. КПД устройства составляет 100%. Это достигается благодаря использованию усилителей мощности.
  5. Мотор Джонсона. Это довольно популярный тип устройств, но в промышленности его не применяют из-за малой мощности.

Большинство видов агрегатов можно успешно применять в разных отраслях промышленности. Это позволит не только экономить на топливе, но и снизить уровень загрязнения окружающей среды.

Прибор Вега и его особенности

Бтг работают по схеме захвата свободной энергии, после чего идёт её преобразование в индукционный ток. Адамс и Бедини посвятили свою жизнь изучению этого физического явления. Приборы можно применять как автономное обеспечение электроснабжением для:

  • частных домов;
  • фермерских или же лесных угодий;
  • судоходства;
  • автомобилестроения;
  • самолётостроения и космонавтики.

Эффективность бестопливных генераторов на магнитах зачастую проявляется в местах, которые не получается обеспечить топливом, а силы природной энергии недостаточно для полного обеспечения электричеством. Следует понимать, что устройство Адамса не является вечным генератором электричества. При эксплуатации ему необходим периодический ремонт. Также агрегат требует постоянного обслуживания.

Бестопливный генератор на магнитах от имеет ряд преимуществ:

  1. Прибор можно использовать в любых погодных условиях, а также вдали от сетей электроснабжения.
  2. Топливом является кинетическая энергия.
  3. Ограничения по производству электричества отсутствуют.
  4. Полностью безопасен для организма человека и природы.
  5. Сделать бестопливный генератор можно своими руками.
  6. Агрегат очень компактный.
  7. Минимальный срок эксплуатации составляет 20 лет.

Основное преимущество заключается в том, что не нужно самостоятельно придавать движение валу. Весь процесс автоматизирован, благодаря преобразованию кинетической энергии в электрический импульс.

Принцип работы

Работа генератора заключается в гибридной в системе. Переменный ток получается после преобразования кинетической энергии. Ротор вращается благодаря силе магнитного поля, которое исходит от торцов электромагнитов. Таким образом, магнитные колебания позволяют создать электрический импульс. Самая простая конструкция содержит в себе:

  1. Генератор. Это цилиндрическая ёмкость, которая обязательно должна герметично закрываться. Внутри возникает электромагнитное поле, благодаря направленному воздействию катушек.
  2. Конвектор-преобразователь. Продуцирует электроэнергию из магнитных импульсов. На выходе получается переменный ток.
  3. Аккумуляторы. Необходимы для накапливания заряда. Благодаря им можно пользоваться электричеством в любое время.

Главным элементом в конструкции является многополюсный генератор прямого вращения. Снаружи располагаются магниты. Их количество зависит от необходимой мощности. Минимальный коэффициент полезного действия такого устройства составляет 90%. Из генераторов можно создать электрические сети, соединяя несколько устройств между собой. Это выгодно, если мощность аппарата составляет, например, 5 киловатт, а требуется мощность в 10 киловатт.

Создание аппарата своими руками

Получение электрической энергии в огромных количествах без затрат топлива — идея заманчивая и вполне выполнимая. Создание такого устройства можно рассмотреть на примере генератора Адамса. Для самостоятельной сборки понадобятся:

  1. Магниты. Чем больше магнит, тем сильнее он воздействует на индукционное поле, а также на количество вырабатываемой энергии. Для генератора небольшой мощности подойдут маленькие куски. Желательно, чтобы размеры были одинаковыми. Для нормальной работы достаточно 15 штук. Плюсовой полюс одного магнита должен устанавливаться напротив плюса другого. Если не соблюсти это условие, то индукционного поля не будет.
  2. Медные провода.
  3. Две катушки. Их можно достать из старых двигателей или же намотать проволоку самостоятельно.
  4. Листовая сталь для изготовления корпуса.
  5. Болты, шайбы, шурупы и гвозди. Они необходимы для крепежа небольших элементов.

Сначала магнит нужно закрепить на основании катушки. Сделать это можно, если высверлить в нём отверстие, а затем закрепить болтами. Провода на катушках должны быть толщиной в 1,25 мм и иметь слой изоляции. Катушки следует крепить на металлической раме так, чтобы между торцами были небольшие зазоры. Это требуется для свободного вращения основного элемента.

Процесс создания ротора

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

Модификация автомобильного генератора

Создание ротора на постоянных магнитах требует достаточно серьезного вмешательства в конструкцию. Необходимо уменьшить диаметр на толщину магнитов плюс толщину стальной гильзы, которая одевается на ротор для образования сплошного магнитного потока и одновременно служит посадочной площадкой под магниты. Некоторые специалисты обходятся без гильзы, устанавливая магниты прямо на ротор с уменьшенным диаметром и фиксируя на эпоксидку.

Процесс изготовления требует участия производственного оборудования. В токарный станок зажимается ротор и аккуратно снимается слой с таким расчетом, чтобы установленные магниты вращались с минимальным зазором, но вполне свободно. Установка магнитов производится на пластины ротора с чередованием полюсности.

Изготовление ротора из ступицы и тормозного диска

Рассмотренный способ относится к готовым генераторам, нуждающимся в небольших изменениях конструкции. К таким устройствам относятся автомобильные генераторы, часто применяющиеся самодеятельными конструкторами в качестве базового устройства. Зачастую генераторы собирают полностью самостоятельно, не имея готового устройства.

В таких случаях действуют несколько иначе. За основу берется автомобильная ступица с тормозным диском. Она качественно отбалансирована, прочна и приспособлена к нагрузкам определенного рода. Кроме того, размер ступицы позволяет разместить по окружности большое число магнитов, позволяя получить трехфазное напряжение.

Магниты с чередованием полюсности размещают на равноудаленном от центра расстоянии. Очевидно, что наибольшее число можно установить, если приклеивать их как можно ближе к наружному краю. Наиболее точным показателем станет размер магнитов, который определит возможность размещения на определенном расстоянии. Число магнитов должно быть четным, чтобы не сбивался ритм чередования полюсов при вращении.

Наклейка магнитов на ступицу производится при помощи любого клея, оптимальным вариантом считается эпоксидная смола, которой заливают магниты полностью. Это защищает их от воздействия влаги или от механических воздействий. Перед заливкой по краю ступицы рекомендуется сделать бортик из пластилина, не позволяющий эпоксидке стекать со ступицы вниз.

Конструкция генератора на автомобильной ступице наиболее удобна при изготовлении вертикального ветряка. Примечательно, что подобную схему можно использовать и без ступицы, на диске, вырезанном из обычной фанеры. Такая конструкция намного легче, позволяет выбирать удобный размер, что делает возможным создание чувствительного и производительного устройства.

Cамодельный генератор для ветряка

Как сделать низкооборотный генератор для ветряка из неодимовых магнитов. Самодельный генератор для ветряка, схемы, фото, видео.

Для изготовления самодельного ветряка в первую очередь требуется генератор, при чём, предпочтительней низкооборотный. В этом и заключается основная проблема, найти такой генератор достаточно сложно.Первое что приходит в голову, взять стандартный автомобильный генератор, но все автомобильные генераторы рассчитаны на высокие обороты, зарядка аккумулятора начинается от 1000 об/мин. Если установить автогенератор на ветряк, то достичь таких оборотов будет сложно, понадобится делать дополнительный шкив с ременной или цепной передачей, всё это усложняет и утяжеляет конструкцию.

Для ветряка нужен низкооборотный генератор, оптимальный вариант генератор аксиального типа на неодимовых магнитах. Поскольку таких генераторов по доступной цене в продаже практически нет, аксиальный генератор можно изготовить самостоятельно.

Самодельный генератор для ветряка из неодимовых магнитов.

Для изготовления генератора аксиального типа понадобятся:

  • Ступица от авто, тормозные диски.
  • Неодимовые магниты.
  • Медная проволока (0,7мм).
  • Эпоксидная смола.
  • Крепёжные элементы.

Генератор аксиального типа для ветряка представлен на схеме.

В данном случае в роли статора будет диск с катушками, ротором будут два диска с постоянными магнитами. При вращении ротора в катушках статора будет генерироваться ток, который нужен нам для зарядки аккумуляторов.

Самодельный генератор: изготовление статора.

Статор – неподвижная часть генератора состоит из катушек, которые размещаются напротив магнитов ротора. Внутренний размер катушек обычно равен внешнему размеру магнитов, которые используются в роторе.

Для намотки катушек можно изготовить простое приспособление.

Толщина медной проволоки для катушек примерно 0,7 мм, количество витков в катушках нужно подсчитывать индивидуально, общее количество витков во всех катушках должно быть не менее 1200.

Катушки размещаются на статоре, выводы катушек можно подключить двумя способами, в зависимости от того на сколько фаз будет генератор.

Трёхфазный генератор будет более эффективным для ветрогенератора, поэтому рекомендуется соединить катушки по типу звезда.

Чтобы катушки зафиксировать на статоре их заливают эпоксидной смолой. Для этого нужно сделать форму для заливки из куска фанеры, чтобы жидкая смола не растеклась, нужно сделать борта из пластилина или аналогичного материала. На этом этапе нужно предусмотреть проушины для крепления статора.

Важно чтобы получилась идеально ровная плоскость, поэтому перед заливкой матрицу с катушками нужно установить на ровную поверхность. Катушки перед заливкой нужно тщательно проверить мультиметром и выложить на матрицу по кругу с таким расчётом, чтобы потом магниты ротора находились напротив катушек.

В матрицу заливается жидкая эпоксидная смола по уровень края катушек, перед заливкой форму нужно смазать вазелином.

Когда смола полностью застынет, матрицу разбираем и извлекаем готовый статор с катушками.

Статор фиксируется на корпусе генератора с помощью болтов или шпилек с гайками.

Самодельный генератор: изготовление ротора.

В этой конструкции ротор будет двусторонним, статор с катушками будет посредине между вращающимися дисками с магнитами.

На каждом диске ступицы нужно по кругу расположить магниты, в последовательности поочерёдно меняя полюса.

Когда диски ротора будут установлены, магниты должны быть направлены друг к другу разными полюсами.

Магниты нужно приклеить к дискам суперклеем и залить эпоксидной смолой, верхняя часть магнитов должна остаться непокрытой.

Изготовление ротора для самодельного генератора видео.

Чтобы закрепить статор на ветрогенераторе нужно изготовить металлическое основание, статор крепится к нему с помощью болтов или шпилек.

Собираем всю конструкцию, при этом нужно оставить минимальный зазор между статором ротором, чем меньше зазор, тем эффективней генератор будет вырабатывать энергию. На выход из катушек нужно подключить диодный мост.

В итоге у вас получится аксиальный генератор на неодимовых магнитах. Самодельный генератор может работать на низких оборотах и при этом вырабатывать достаточно энергии для зарядки аккумуляторных батарей, что немаловажно при установке ветогенератора в районах, где преобладают слабые ветра.

Генератор для ветряка видео.

Электрические и технические параметры генератора

Расчет напряжения выполняют по формуле:

Самодельный генератор

U=2*Ч*КП*КК*КВ*МИ*П, где:

  • U – напряжение в Вольтах;
  • Ч – частота оборотов ротора генератора за одну секунду;
  • КП – количество магнитных полюсов;
  • КК – количество индукционных катушек в статоре;
  • КВ – число витков проводника в одной индукционной катушке;
  • МИ – магнитная индукция в Тл, которая образуется в стандартном зазоре (2 мм);
  • П – площадь поверхности одного неодимового магнита, в кв. м.

Если применяют простые катушки, для расчета берут магнитную индукцию 0,5 Тл. При добавлении сердечника из электротехнической стали значение увеличивают до 0,7-0,9Тл.

К сведению. Формула действительна при соединении обмоток «треугольником». Если трехфазный генератор собирают по схеме «звезда», полученное значение умножают на поправочный коэффициент 1,7.

После вычисления напряжения надо узнать сопротивление в обмотках. После этого несложно будет определить силу тока и мощность. Для медного проводника удельное сопротивление составляет 0,0175 Ом на мм кв./ метр. Для расчета общей величины применяют формулу:

С= (УС*Д)/ПП, где:

  • С – сопротивление, в Ом;
  • УС – удельное сопротивление определенного материала;
  • Д – длина проводника в метрах;
  • ПП – площадь проводника в сечении, мм кв.

Для расчета силы тока вычитают из напряжения магнитного генератора на холостом ходу напряжение подсоединенного для зарядки аккумулятора. Полученное значение делят на величину рассчитанного по предыдущей формуле сопротивления.

Увеличение/уменьшение оборотов меняет соответствующим образом силу тока при неизменном значении напряжения на клеммах батареи аккумуляторов. Для расчета производительности ветроустановки в разных режимах используют стандартную формулу:

P=I*U, где:

  • Р – мощность, Ватт;
  • I – сила тока, Ампер;
  • U – напряжение, Вольт.

Чем хорош ветрогенератор

Сегодня даже заядлый скептик не будет оспаривать пользу этого вида источников переменного тока.

Конечно, величины напряжения, мощности и тока, полученных от генератора для ветряка, сделанного своими руками не позволят запитать все электроприборы в достаточно большом загородном доме. Но вот снабдить электричеством небольшой дачный домик, особенно если он расположен далеко от электрической сети, вполне рациональное решение. И даже если только часть потребляемой электроэнергии для дома вы получите от ветряка, то в перспективе экономия будет ощутимой.

Кроме того, сделать генератор для ветряка — это интересная творческая работа, выполнив которую вы по праву сможете гордиться собой.

Изготовление статора трёхфазного генератора переменного тока

Статор генератора, также изготовлен из пластин органического стекла толщиной 8 мм. В пластинах, согласно разметке, отфрезерованы полости для размещения 9 катушек статорной обмотки. Катушки намотаны медным изолированным проводом D – 0,35 мм. Каждая катушка вмещает количество витков, согласно расчётным данным, приведённым выше. Катушки обмотки вклеены в пазы пластин статора с помощью герметика (Приложение, рис. 13-15). Намотку всех фазных катушек необходимо производить в одном направлении отмечая начало и конец обмотки. Соединение катушек каждой фазы производится по схеме: конец – начало. Всего на статорных пластинах размещено по три фазных катушки, соединённых последовательно (Приложение, рис 16). Соединение всех фазных обмоток можно производить двумя способами: звездой и треугольником (Приложение, рис. 17 – 18). В нашем случае, соединение осуществляется звездой, включая все пластины статора. Выпрямление тока осуществляется трёхфазным выпрямителем из полупроводниковых диодов (N4107) (Приложение, рис. 18). Весь «бутерброд» генератора собирается на основании из органического стекла. Пластины статора жёстко прикреплены к основанию металлическими стойками. Пластины ротора закреплены подвижно на подшипниковом узле от двигателя дисковода. Ось подшипникового узла проходит через весь генератор и скрепляет подвижные пластины ротора (Приложение, рис. 17).

Аксиальный 20-ти полюсной ветрогенератор

Ветрогенератор аксиального типа на основе готовой ступицы и трехфазного генератора, который содержит 15 катушек, намотанных проводом 0.7 мм по 70 витков. Ротор данного генератора имеет 20 пар магнитов размером 20 на 5 мм, а толщина статора равна 8 мм. В этой модели используется двухлопастной винт и система защиты от сильного ветра. Материалы и агрегаты использованные для постройки данного ветрогенератора:

1) автомобильная ступица 2) эпоксидная смола 3) металлические уголки 4) магниты размером 20 на 5 мм в количестве 40 штук 5) труба 20 6) суперклей 7) вазелин 8) ступица от прицепа «зубренок» 9) фанера 10) ламинат 8 мм 11) провод толщиной 0.7 мм

Рассмотрим более подробно основные этапы постройки и особенности конструкции данной модели ветрогенератора.

Для начала автор занялся намоткой катушек для статора. Чтобы облегчить данный процесс автор изготовил специальное приспособление:

Для его изготовления автор использовал трубу диаметром 20 мм, таким образом она как раз подходит под размеры магнитов. Автор решил изготовить катушки толщиной 7 мм. Еще одно изображение самодельного станка для намотки катушек:

Автор отмечает, что благодаря данному станку, собранному из подручных материалов, намотка катушек прошла без особых трудностей. Главное мотать катушки виток к витку давая несильную натяжку для того, чтобы витки плотнее прижимались друг к другу.

Итак, автор приступил к изготовлению катушек для генератора. Для того, чтобы катушки не развалились после намотки автор промазывал их клеем для пластика, а так же дополнительно обернул оконным скотчем. Для намотки катушек автор использовал провод толщиной 0.7 мм по 70 витков на каждую катушку. Хотя после конечной сборки автор решил, что нужно было делать по 90 витков, это позволило бы выиграть по напряжению.

Далее была изготовлена форма для заливки статора. Автор решил сделать форму на подложке из фанеры. Для этого на фанеру была нанесена разметка, которая позволит более точно разместить катушки. Средняя часть формы сделана из ламината толщиной 8 мм. Для того, чтобы эпоксидная смола не приставала к форме, автор смазал ее вазелином, это позволит затем легко извлечь статор из заготовки после затвердевания эпоксидной смолы. Для проводов были сделаны специальные канавки при помощи болгарки.

При заливке статора автор использовал стеклосетку, чтобы увеличить прочность статора. Уложив стеклосетку с каждой стороны статора, автор через заранее просверленные отверстия притянул крышку и оставил статор остывать.

Катушки статора были соединены пофазно, все шесть проводов от фаз были выведены по канавкам наружу, после чего провода были замазаны пластилином для того, чтобы смола не вытекала. В последствии автор соединил фазы звездой.

На следующий день статор был извлечен из формы, и автор слегка обработал края для ровности. Магниты на дисках автор так же решил залить эпоксидной смолой для большей надежности. На фотографиях ниже можно рассмотреть, как была выполнена поворотная ось ветрогенератора:

Основой для изготовления поворотной оси послужила автомобильная ступица. Для того, чтобы защитить будущий ветрогенератор от слишком сильного ветра автор использовал стандартную конструкцию увода от ветра путем складывания хвоста. Важно заметить, что ветроголовку необходимо вынести минимум на 100 мм, иначе защита от ветра не будет работать так как ось генератора будет расположена слишком близко к поворотной оси. Так же к конструкции был приварен штырь под углом в 20 градусов и на 45 градусов относительно винта, на этот штырь одевается хвост ветрогенератора. Рассмотрим конструкцию ступицы генератора.

За основу самого генератора была взята ступица от прицепа «Зубренок». Автор использовал неодимовые магниты размером 20х5 мм. На каждый диск ушло по 20 магнитов. Ступица была закручена через пластину, на которую прикреплены уголки. Статор генератора будет держаться на шпильках. Далее автор приступил к изготовлению дисков с магнитами. Магниты были прикреплены на диски при помощи суперклея. Для того, чтобы сделать все максимально точно автор изготовил шаблон из картона. Так же важно заметить, что магниты должны клеиться с чередованием полюсов, таким образом, чтобы на генераторе диски с магнитами притягивались.

Ниже можно рассмотреть, как именно был закреплен хвост ветрогенератора, который будет защищать его от сильного ветра:

На фотографии ветроголовка была размещена слишком близко к поворотной оси ветрогенератора, что в последующем было выявлено на испытаниях и устранено. Однако само крепление хвоста и углы наклона верные. После доведения конструкции до ума, она отлично себя проявила: при усилении ветра винт отворачивается, а хвост складывается и поднимается вверх.

Автор решил сделать для начала двухлопастной вариант винта для своего генератора. Лопасти были изготовлены из ПВХ трубы. Так же был сооружен кожух, который будет закрывать генератор от дождя. Затем генератор был собран и покрашен. После покраски автор решил испытать работу генератора. От руки удалось раскрутить генератор до 30 вольт с силой тока кз 4.5 А.


Данный генератора работает на 3 светодиодные ленты по 25 ватт каждая, но в будущем автор планирует более серьезно подойти к расчету винта для генератора и подключить аккумулятор.

статья взята с сети интернет: https://usamodelkina.ru/

Следите за новостями!

Изготовление ротора трёхфазного генератора переменного тока

Пластины ротора изготовлены из органического стекла толщиной 5 мм. Из органического стекла вырезаны окружности диаметром 95 мм., в них, согласно разметке, просверлили 12 отверстий под неодимовые магниты (D – 15 мм.). Магниты, разноимёнными полюсами, вклеили в предназначенные для них отверстия (Приложение лист V, рис. 12 — 13). Таких пластин для генератора, изготовили три. Центральная пластина, которая располагается между пластинами статора, изготовлена только из органического стекла. На верхнюю и нижнюю пластины ротора приклеены металлические пластины из стали толщиной 1,5 мм. На каждой из пластин размещено по 12 магнитов, ориентированных по полюсам.

Повышение мощности ветрогенератора

Как сделать ветрогенератор своими руками из автомобильного генератора

  1. Включение в схему дополнительных магнитов. На поверхность существующих доклеить равное или меньшее количество магнитов.
  2. Правильное конструирование лопастей ветряка. Неточности могут привести к увеличению сопротивления на лопатках и снижению эффективности установки.
  3. Для усиления магнитопотока в катушку устанавливают пластины трансформатора. Незначительное залипание полностью компенсируется повышением КПД установки. Метод позволяет увеличить мощность установки на 60%.

Виды магнитов

Постоянные магниты разделяют на 2 вида:

  • естественные;
  • искусственные.

Естественные

В природе естественный постоянный магнит – это ископаемое в виде обломка железняка. Магнитная порода (магнетит) в каждом народе имеет своё название. Но в каждом наименовании присутствует такое понятие, как «любящий», «притягивающий металл». Название Магнитогорск означает расположение города рядом с горными залежами естественного магнетита. В течение многих десятков лет здесь велась активная добыча магнитной руды. На сегодня от Магнитной горы ничего не осталось. Это была разработка и добыча естественного магнетита.

Пока человечеством не был достигнут должный уровень научно-технического прогресса, естественные постоянные магниты служили для разных забав и фокусов.

Искусственные

Искусственные ПМ получают путём наведения внешнего магнитного поля на различные металлы и их сплавы. Было замечено, что одни материалы сохраняют приобретённое поле в течение длительного времени – их называют твёрдыми магнитами. Быстро теряющие свойства постоянных магнитов материалы носят называние мягких магнитов.

В условиях заводского производства применяют сложные металлические сплавы. В структуру сплава «магнико» входят железо, никель и кобальт. В состав сплава «альнико» вместо железа включают алюминий.

Изделия из этих сплавов взаимодействуют с мощными электромагнитными полями. В результате получают достаточно мощные ПМ.


Виды и формы ПМ

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;

  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Принцип работы ветряного генератора и виды оборудования

Все ветрогенераторы состоят из лопасти, ротора турбины, генератора, оси генератора, инвертора и аккумулятора. Условно можно разделить все модели на промышленные и домашние, при этом принцип работы у них будет одинаков.

Пример схемы покупной модели

Вращаясь, ротор создает переменный ток с тремя фазами, который идет через контроллер к аккумулятору, а дальше, в инверторе преобразуется в стабильный для подачи к электроприборам.

Простая схема работы

Вращение лопастей происходит за счет физического воздействия при помощи импульсной или подъемной силы, в результате чего в действие приходит маховик, а также под воздействием тормозящей силы. В процессе маховик начинает раскручиваться, а ротор создает поле магнитное на зафиксированной части генератора, после чего воспроизводится ток.

В целом разделяют ветрогенераторы на вертикальные и горизонтальные. Что связано с расположением оси вращения.

Вертикальный вариант

Планируя создания ветряка своими руками на 220В, в первую очередь продумайте именно вертикальные варианты. Среди них выделяют:

  • Ротор Савониуса. Самый простой, появившийся еще в 1924 году. В основе лежат два полуцилиндра на вертикальной оси. К недостаткам относят низкое использование энергии ветра.

Вариант ротора Савониуса

  • С ротором Дарье. Появился в 1931 году, раскрутка происходит за счет разности сопротивления аэродинамического горба и кармана ленты, поэтому к недостаткам относится малый вращательный момент, а также необходимость монтировать нечетное количество лопастей.

Разновидность ветрового генератора Дарье

  • Геликоидный. Лопасти имею закрученную форму, уменьшая нагрузку на подшипник, увеличивая срок эксплуатации. Недостаток – высокая цена.

Геликоидный

Самодельный вариант выйдет дешевле, если его правильно продумать и смонтировать.

Горизонтальные модели

Горизонтальные модели разделяют по количеству лопастей. КПД у них выше, но есть необходимость монтажа флюгера для постоянного поиска направления ветра. Обороты вращения все модели имеют высокие, вместо лопастей монтируют противовес, который оказывает влияние на сопротивление воздуху.

Вариант горизонтальных моделей

Многолопастные модели могут иметь до 50 лопастей с большой инерцией. Их можно применять для работы водяных насосов.

Преимущества

Приборы приобретают в готовом виде или изготавливают самостоятельно. Купив ветрогенератор, его остается только установить. Все регулировки и центровки уже пройдены, проведены испытания при различных климатических условиях.

Неодимовые магниты, которые используются вместо редуктора и подшипников, позволяют достичь следующих результатов:

  • сокращается трение, и повышается срок эксплуатации всех деталей;
  • исчезает вибрация и шум прибора при работе;
  • себестоимость уменьшается;
  • экономится электроэнергия;
  • исчезает необходимость регулярно обслуживать прибор.

Ветрогенератор можно приобрести со встроенным инвертором, который заряжает батарею, а также с контроллером.

Способ намотки катушки статора ветряка

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

Как сделать ветрогенератор своими руками

Основой создания ветрогенератора является грамотно сделанный проект и подготовленный чертёж. Это очень важно, потому что без чёткого представления о том, как должен выглядеть прибор, будет трудно построить его правильно, не нарушив порядок монтажа всех элементов.

Чертежи и схемы

Начинать нужно с составления общего эскиза ветротурбины, пометив ключевые элементы: башню, генератор, деревянное основание, лопасти и ступицу, которая соединяет их вместе. Самостоятельно составленная схема может быть не сильно подробной: в этом нет необходимости. Её следует использовать для общего представления о том, каким будет расположение различных частей ветряного двигателя, и как конструкция будет выглядеть на завершающих этапах.

Схема сборки ветроэлектрического генератора

После подготовки схемы нужно выставить правильные размеры ветрогенератора. Они должны включать в себя высоту, длину и ширину деревянного основания, которое соединяет генератор и хвостовой плавник с башней. Также определить размеры для лопастей из металлических труб или труб из ПВХ, в зависимости от того, какой материал будет использоваться. Отдельные измерения нужны для хвостового плавника: высота, ширина и длина, а также диаметр – для лезвий, которые определяют размер ветровой турбины.

После того как будет готов чертёж и черновой набросок устройства с выставленными размерами, можно переходить к подготовке материалов и инструментов для работы.

Принцип работы устройств

Главной проблемой конструкции считался возврат вращающихся деталей в исходной положение без существенных потерь крутящего момента. Данная проблема была решена с помощью медного проводника, по которому был пропущен электрический ток, вызывающий притяжение. При отключении тока, действие притяжения прекращалось. Таким образом, в устройствах этого типа использовалось периодическое включение-отключение.

Повышенный ток создает увеличенную силу притяжения, а та, в свою очередь, участвует в выработке тока, проходящего через медный проводник. В результате циклических действий, устройство, кроме совершения механической работы, начинает производить электрический ток, то есть выполнять функции генератора.

Немного истории и теории

Вспомним немного школьный курс физики, из которого нам известно, что явление электромагнитной индукции было открыто в 1831 году английским физиком Майклом Фарадеем. А заключается оно в следующем: при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает электрический ток.

То есть в простейшем виде такой генератор выглядит как рамка, помещенная в поле постоянного магнита, вращающаяся под действием механической силы. Однако такой тип генератора переменного тока с неподвижной магнитной системой (индуктором) и вращающимися витками проводника (якорем) применяется очень редко. Связано это с тем, что для отведения тока от движущейся катушки требуются подвижные контакты, а при токе высокого напряжения в таких контактах будет иметь место сильное искрение. Поэтому в подавляющем большинстве индукционных генераторов переменного тока обмотку (якорь), в которой наводится ток, делают неподвижной и называют статором, а вращают магнитную систему (индуктор), который называют ротором. В мощных генераторах магнитное поле создают обычно с помощью электромагнита, питаемого от источника постоянного тока — возбудителя.

Однако с появлением магнитов из сплава неодим-железо-бор, которые по своим характеристикам значительно превосходят другие виды постоянных магнитов, появилась возможность изготавливать ротор генератора на основе постоянных магнитов. Неодимовые магниты, разработанные в 70–80-е годы прошлого века, отличаются высокими и стабильными магнитными свойствами при малых размерах.

Теперь несколько слов о механической энергии, которую генератор преобразует в электричество. Для вращения ротора генератора используются энергия воды (гидрогенераторы), энергия пара (парогенераторы). Существуют генераторы, работающие от дизельных и бензиновых двигателей внутреннего сгорания. Забота же об окружающей среде и об экономии собственных средств заставила человека вспомнить о таком «неутомимом работнике» как ветер. С незапамятных времен люди использовали энергию ветра для движения кораблей и для превращения зерна в муку. Современные ветряные двигатели для электрогенераторов ведут свою родословную именно от ветряных мельниц. Соединив ветряной двигатель (ветряк) с электрогенератором, изготовленным с применением современных магнитов, получим ветрогенератор на неодимовых магнитах — экологически безопасный и экономичный источник электрической энергии.

Природа магнетизма

Демонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита?

Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества.

В потенциальных магнетитах при отсутствии внешнего воздействия поля элементов атомной решётки ориентированы хаотически. Внешнее магнетическое поле «выстраивает» микрополя структуры материала в строго определённом направлении. Потенциалы противоположных концов магнетита взаимно отталкиваются. Если приближать одинаковые полюсы двух полосовых ПМ, то руки человека ощутят сопротивление движению. Разные полюсы будут стремиться друг к другу.

При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ).

Выводы и дополнительная информация

С помощью редуктора и тщательного расчета лопастей можно создать тихоходный, малошумящий низкооборотный генератор на неодимовых магнитах. Современные электронные компоненты и соответствующая схемотехника помогут создать инвертор с высоким КПД. Новые модели аккумуляторов выполняют свои функции безупречно, без регламентного обслуживания, сохраняют свои полезные функции после сотен циклов перезарядки.


Ветрогенераторы с вертикальной осью вращения ротора

Для ознакомления с действующими установками можно посмотреть реализованные проекты Сергея Савченко, Александра Седова, Валерия Яловенко, Виктора Бурлака. Их идеи можно трансформировать с учетом личных возможностей и предпочтений. Упростить расчеты несложно с помощью специализированных программ-калькуляторов, которые можно быстро найти в сети Интернет. В любом случае магнитный генератор следует рассматривать вместе с другими частями системы автономного снабжения электроэнергией, чтобы обеспечить хорошую согласованность.

Основа домашнего ветрогенератора

Тема изготовления и установки самодельных ветряных генераторов очень широко представлена в сети Интернет. Однако большая часть материала – это банальное описание принципов получения электрической энергии от природных источников.

Теоретическая методика устройства (установки) ветрогенераторов уже давно известна и вполне понятна. А вот как обстоят дела практически в бытовом секторе – вопрос, раскрытый далеко не полностью.

Чаще всего в качестве источника тока для самодельных домашних ветрогенераторов рекомендуют выбирать автомобильные генераторы или асинхронные двигатели переменного тока, дополненные неодимовыми магнитами.

НЕОДИМОВЫЙ


Процедура переделки асинхронного электродвигателя переменного тока под генератор для ветряка. Заключается в изготовлении «шубы» ротора из неодимовых магнитов. Крайне сложный и долговременный процесс

Однако оба варианта требуют существенной доработки, нередко сложной, дорогостоящей, отнимающей много сил и времени.

Куда проще и легче во всех отношениях установить электродвигатели, подобные тем, что выпускались прежде и выпускаются теперь фирмой Ametek (пример) и другими.

Для домашней ветрогенераторной установки подходят моторы постоянного тока напряжением 30 – 100 вольт. В режиме генератора от них можно получить примерно 50% от заявленного рабочего напряжения.

Следует отметить: при работе в режиме генерации электродвигатели постоянного тока требуется раскручивать до скорости выше номинальной.

При этом каждый отдельно взятый мотор из десятка одинаковых экземпляров, может показывать совершенно разные характеристики.

Поэтому оптимальный подбор электродвигателя к домашнему ветрогенератору логичен при следующих показателях:

  1. Высокий параметр рабочего напряжения.
  2. Низкий параметр RPM (угловая скорость вращения).
  3. Высокое значение рабочего тока.

Так, удачным под установку выглядит мотор производства фирмы Ametek с рабочим напряжением 36 вольт и угловой скоростью вращения — 325 об/мин.

Именно такой электродвигатель используется в конструкции ветрогенератора – установки, что описана ниже в качестве примера домашнего ветряка.

ЭЛЕКТРОМОТОР


Мотор постоянного тока для домашнего ветрогенератора. Оптимальный вариант из числа продуктов, изготовленных фирмой Ametek. Также удачно подходят подобные электродвигатели производства других фирм

Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

Выводы и дополнительная информация

С помощью редуктора и тщательного расчета лопастей можно создать тихоходный, малошумящий низкооборотный генератор на неодимовых магнитах. Современные электронные компоненты и соответствующая схемотехника помогут создать инвертор с высоким КПД. Новые модели аккумуляторов выполняют свои функции безупречно, без регламентного обслуживания, сохраняют свои полезные функции после сотен циклов перезарядки.

Для ознакомления с действующими установками можно посмотреть реализованные проекты Сергея Савченко, Александра Седова, Валерия Яловенко, Виктора Бурлака. Их идеи можно трансформировать с учетом личных возможностей и предпочтений. Упростить расчеты несложно с помощью специализированных программ-калькуляторов, которые можно быстро найти в сети Интернет. В любом случае магнитный генератор следует рассматривать вместе с другими частями системы автономного снабжения электроэнергией, чтобы обеспечить хорошую согласованность.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]