Самая горячая часть свечи. От чего зависит цвет пламени

Горение восковой свечи представляет собой процесс, при котором воск изменяет свое состояние и становится жидким. Температура горения свечи восковой — еще один интересный вопрос для рассмотрения. Дело в том, что градусы в различных точках свечи отличаются, в наивысшей из них температура достигает огромных значений и превышает 1000 градусов по Цельсию. Сегодня мы поговорим о времени горения свечей восковых. Читайте следующую статью на страницах журнала , и вы узнаете, сколько горит свеча и что представляет собой процесс ее горения.

Горение восковой свечи

Свечи, изготовленные из натурального пчелиного воска, не содержат вредных компонентов и абсолютно безопасны. К тому же, свечи из воска содержат мощный дезинфицирующий компонент – прополис. Воск в процессе плавления выделяет едва заметный, но все же ощутимый аромат.

Восковые свечи при горении слегка потрескивают, образуя аккуратную капельку расплавленного вещества под языком пламени. Горят долго, практически не образуя потеков, при этом выделяют едва ощутимый запах.

Воск в процессе плавления выделяет едва заметный но все же ощутимый аромат

Любой воск — это углеводород, состоящий из знакомых всем атомов водорода (H) и углерода (С). На самом деле, горение воска в чем-то уникальный процесс, отличающийся от сгорания дерева или бумаги. Высокая температура возле фитиля расплавляет воск. При этом выделяются уже знакомые молекулы водорода и углерода.

Они попадают в пламя (которое держится благодаря кислороду). При реакции с ним возникает углекислый газ и…вода. Точнее пар, т.к. из-за значительной температуры она превращается в газ. А градусов от фитиля вполне достаточно, чтобы плавить воск дальше. Так реакция длится, пока у огня есть «топливо» в виде кислорода и воска.

Какие аромамасла подойдут для зимы?

Аромат свечи — это очень глубокая тема. Сделать уникальную композицию, конечно, сложно. Если производитель выпускает свечу с ароматом кожи и ванили, значит, он смешал несколько аромамасел (каких именно — загадка), чтобы добиться запаха, похожего на кожу. Это целое искусство — постараться передать запах вещи, из которой нельзя изготовить масло.

Для холодного времени года подойдут ароматы, которые наполнят дом спокойствием и уютом: мандарин, апельсин, кипарис, ель, сосна, можжевельник, пихта, корица, гвоздика — то есть пряные, цитрусовые, фруктовые или хвойные. К тому же эти масла можно использовать как средство для профилактики простуды: они повышают иммунитет и поднимают настроение.

Горение восковой свечи какое явление

Данный опыт со свечой представляет собой практическое занятие, в ходе которого проводятся различные опыты, представляющие собой как физические, так и химические процессы. Зажжем свечу и дадим ей немного погореть. В процессе горения свечи сгорает фитиль и парафин, часть парафина плавится, нагреваясь от тепла, выделяемого в процессе горения.

Горение фитиля и парафина – это химические процессы, т.к. исходные вещества превращаются в новые продукты реакции. Эти продукты – газообразные, т.к. свеча уменьшается в размерах. Горение сопровождается выделением тепла и света.

Плавление парафина, как было сказано выше, относится к физическим явлениям. Охарактеризуем процесс горения свечи. Условиями начала реакции является поджог и соприкосновение фитиля с воздухом. Условие течения реакции – приток свежего воздуха (если его прекратить, свеча погаснет). Признаки реакции – выделение тепла и света.

Химический состав и цвет пламени

У карманных зажигалок небольшой размер, это позволяет их переносить без каких-либо проблем. Довольно редко можно встретить настольную зажигалку. Ведь они из-за своих больших размеров для переноски не предназначены. Их дизайн разнообразен. Есть зажигалки каминные. Они имеют небольшую толщину и ширину, но довольно длинные.

На сегодняшний день становятся популярными рекламные зажигалки. Если в доме нет электроэнергии, то невозможно ей поджечь газовую плиту. Газ поджигает образующаяся электрическая дуга. Достоинствами этих зажигалок являются следующие качества.

  1. Долговечность и простота конструкции.
  2. Быстрое и надёжное зажигание газа.

Первая зажигалка с современным кремнём создана в Австрии в 1903 году после изобретения ферроцериевого сплава бароном Карлом Ауэром фон Вельсбахом.

Ускорилось развитие зажигалок в период Первой мировой войны. Солдаты начали применять спички для того, чтобы видеть в темноте дорогу, но их местоположение выдавала интенсивная вспышка при поджиге. Необходимость в огне без значительной вспышки способствовало развитию зажигалок.

В то время лидерами производства зажигалок «кремнёвых» были Германия и Австрия. Такое портативное устройство, которое предназначено для получения огня, находящиеся в кармане многих курильщиков, при неправильном обращении может таить в себе немало опасностей.

Зажигалка в период работы не должна вокруг себя разбрызгивать искры. Огонь должен быть стабильным и ровным. Температура огня в зажигалках карманных достигает примерно 800−1000 градусов. Свечение красного или оранжевого цвета вызвано частицами углерода, которые раскалились. Для бытовых горелок и турбозажигалок применяется в основном газ бутан, который легко сжигается, не имеет запаха и цвета. Бутан получают путём переработки при высоких температурах нефти, а также её фракций. Бутан — это легковоспламенимые углеводороды, но он абсолютно безопасен в конструкциях современных зажигалок.

Подобные зажигалки в быту очень полезны. Ими можно поджечь любой воспламеняющийся материал. В комплект турбозажигалок входит настольная подставка. Цвет пламени зависит от горючего материала и температуры горения. Пламя костра или камина в основном имеет пёстрый вид. Температура горения дерева ниже температуры горения фитиля свечи. Именно из-за этого цвет костра не жёлтый, а оранжевый.

Медь, натрий и кальций при высоких температурных показателях светятся различными цветами.

Электрическая зажигалка была изобретена в 1770 году. В ней водородная струя воспламенялась от искры машины электрофорной. Со временем бензиновые зажигалки уступили место газовым, которые более удобные. В них обязательно должна находиться батарейка — источник энергии.

Не очень давно появились зажигалки сенсорные, в которых без механического воздействия происходит зажигание газа воздействием на сенсорный датчик. Сенсорные зажигалки карманного типа. В основном, в них содержится информация рекламного типа, которая нанесена при помощи тампонной или шелкотрафаретной печати.

Чем проклинать тьму, лучше зажечь хотя бы одну маленькую свечу. Конфуций

В начале

Первые попытки понять механизм горения связаны с именами англичанина Роберта Бойля, француза Антуана Лорана Лавуазье и русского Михаила Васильевича Ломоносова. Оказалось, что при горении вещество никуда не «исчезает», как наивно полагали когда-то, а превращается в другие вещества, в основном газообразные и потому невидимые. Лавуазье в 1774 году впервые показал, что при горении из воздуха уходит примерно пятая его часть. В течение XIX века ученые подробно исследовали физические и химические процессы, сопровождающие горение. Необходимость таких работ была вызвана прежде всего пожарами и взрывами в шахтах.

Но только в последней четверти ХХ века были выявлены основные химические реакции, сопровождающие горение, и по сей день в химии пламени осталось немало темных пятен. Их исследуют самыми современными методами во многих лабораториях. У этих исследований несколько целей. С одной стороны, надо оптимизировать процессы горения в топках ТЭЦ и в цилиндрах двигателей внутреннего сгорания, предотвратить взрывное горение (детонацию) при сжатии в цилиндре автомобиля воздушно-бензиновой смеси. С другой стороны, необходимо уменьшить количество вредных веществ, образующихся в процессе горения, и одновременно — искать более эффективные средства тушения огня.

Читать также: Пайка пнд труб паяльником

Существуют два вида пламени. Топливо и окислитель (чаще всего кислород) могут принудительно или самопроизвольно подводиться к зоне горения порознь и смешиваться уже в пламени. А могут смешиваться заранее — такие смеси способны гореть или даже взрываться в отсутствие воздуха, как, например, пороха, пиротехнические смеси для фейерверков, ракетные топлива. Горение может происходить как с участием кислорода, поступающего в зону горения с воздухом, так и при помощи кислорода, заключенного в веществе-окислителе. Одно из таких веществ — бертолетова соль (хлорат калия KClO3); это вещество легко отдает кислород. Сильный окислитель — азотная кислота HNO3: в чистом виде она воспламеняет многие органические вещества. Нитраты, соли азотной кислоты (например, в виде удобрения — калийной или аммиачной селитры), легко воспламеняются, если смешаны с горючими веществами. Еще один мощный окислитель, тетраоксид азота N2O4 — компонент ракетных топлив. Кислород могут заменить и такие сильные окислители, как, например, хлор, в котором горят многие вещества, или фтор. Чистый фтор — один из самых сильных окислителей, в его струе горит вода.

Цепные реакции

Основы теории горения и распространения пламени были заложены в конце 20-х годов прошлого столетия. В результате этих исследований были открыты разветвленные цепные реакции. За это открытие отечественный физикохимик Николай Николаевич Семенов и английский исследователь Сирил Хиншельвуд были в 1956 году удостоены Нобелевской премии по химии. Более простые неразветвленные цепные реакции открыл еще в 1913 году немецкий химик Макс Боденштейн на примере реакции водорода с хлором. Суммарно реакция выражается простым уравнением H2 + Cl2 = 2HCl. На самом деле она идет с участием очень активных осколков молекул — так называемых свободных радикалов. Под действием света в ультрафиолетовой и синей областях спектра или при высокой температуре молекулы хлора распадаются на атомы, которые и начинают длинную (иногда до миллиона звеньев) цепочку превращений; каждое из этих превращений называется элементарной реакцией:

Cl + H2 → HCl + H, H + Cl2 → HCl + Cl и т. д.

На каждой стадии (звене реакции) происходит исчезновение одного активного центра (атома водорода или хлора) и одновременно появляется новый активный центр, продолжающий цепь. Цепи обрываются, когда встречаются две активные частицы, например Cl + Cl → Cl2. Каждая цепь распространяется очень быстро, поэтому, если генерировать «первоначальные» активные частицы с высокой скоростью, реакция пойдет так быстро, что может привести к взрыву.

Н. Н. Семенов и Хиншельвуд обнаружили, что реакции горения паров фосфора и водорода идут иначе: малейшая искра или открытое пламя могут вызвать взрыв даже при комнатной температуре. Эти реакции — разветвленно-цепные: активные частицы в ходе реакции «размножаются», то есть при исчезновении одной активной частицы появляются две или три. Например, в смеси водорода и кислорода, которая может спокойно храниться сотни лет, если нет внешних воздействий, появление по той или иной причине активных атомов водорода запускает такой процесс:

Таким образом, за ничтожный промежуток времени одна активная частица (атом H) превращается в три (атом водорода и два гидроксильных радикала OH), которые запускают уже три цепи вместо одной. В результате число цепей лавинообразно растет, что моментально приводит к взрыву смеси водорода и кислорода, поскольку в этой реакции выделяется много тепловой энергии. Атомы кислорода присутствуют в пламени и при горении других веществ. Их можно обнаружить, если направить струю сжатого воздуха поперек верхней части пламени горелки. При этом в воздухе обнаружится характерный запах озона — это атомы кислорода «прилипли» к молекулам кислорода с образованием молекул озона: О + О2 = О3, которые и были вынесены из пламени холодным воздухом.

Возможность взрыва смеси кислорода (или воздуха) со многими горючими газами — водородом, угарным газом, метаном, ацетиленом — зависит от условий, в основном от температуры, состава и давления смеси. Так, если в результате утечки бытового газа на кухне (он состоит в основном из метана) его содержание в воздухе превысит 5%, то смесь взорвется от пламени спички или зажигалки и даже от маленькой искры, проскочившей в выключателе при зажигании света. Взрыва не будет, если цепи обрываются быстрее, чем успевают разветвляться. Именно поэтому была безопасной лампа для шахтеров, которую английский химик Хэмфри Дэви разработал в 1816 году, ничего не зная о химии пламени. В этой лампе открытый огонь был отгорожен от внешней атмосферы (которая могла оказаться взрывоопасной) частой металлической сеткой. На поверхности металла активные частицы эффективно исчезают, превращаясь в стабильные молекулы, и потому не могут проникнуть во внешнюю среду.

Полный механизм разветвленно-цепных реакций очень сложен и может включать более сотни элементарных реакций. К разветвленно-цепным относятся многие реакции окисления и горения неорганических и органических соединений. Таковой же будет и реакция деления ядер тяжелых элементов, например плутония или урана, под воздействием нейтронов, которые выступают аналогами активных частиц в химических реакциях. Проникая в ядро тяжелого элемента, нейтроны вызывают его деление, что сопровождается выделением очень большой энергии; одновременно из ядра вылетают новые нейтроны, которые вызывают деление соседних ядер. Химические и ядерные разветвленно-цепные процессы описываются сходными математическими моделями.

Что надо для начала

Чтобы началось горение, нужно выполнить ряд условий. Прежде всего, температура горючего вещества должна превышать некое предельное значение, которое называется температурой воспламенения. Знаменитый роман Рэя Брэдбери «451 градус по Фаренгейту» назван так потому, что примерно при этой температуре (233°C) загорается бумага. Это «температура воспламенения», выше которой твердое топливо выделяет горючие пары или газообразные продукты разложения в количестве, достаточном для их устойчивого горения. Примерно такая же температура воспламенения и у сухой сосновой древесины.

Температура пламени зависит от природы горючего вещества и от условий горения. Так, температура в пламени метана на воздухе достигает 1900°C, а при горении в кислороде — 2700°C. Еще более горячее пламя дают при сгорании в чистом кислороде водород (2800°C) и ацетилен (3000°C). Недаром пламя ацетиленовой горелки легко режет почти любой металл. Самую же высокую температуру, около 5000°C (она зафиксирована в Книге рекордов Гиннесса), дает при сгорании в кислороде легкокипящая жидкость — субнитрид углерода С4N2 (это вещество имеет строение дицианоацетилена NC–C=C–CN). А по некоторым сведениям, при горении его в атмосфере озона температура может доходить до 5700°C. Если же эту жидкость поджечь на воздухе, она сгорит красным коптящим пламенем с зелено-фиолетовой каймой. С другой стороны, известны и холодные пламена. Так, например, горят при низких давлениях пары фосфора. Сравнительно холодное пламя получается и при окислении в определенных условиях сероуглерода и легких углеводородов; например, пропан дает холодное пламя при пониженном давлении и температуре от 260–320°C.

Читать также: Регулятор оборотов коллекторного двигателя без потери мощности

Только в последней четверти ХХ века стал проясняться механизм процессов, происходящих в пламени многих горючих веществ. Механизм этот очень сложен. Исходные молекулы обычно слишком велики, чтобы, реагируя с кислородом, непосредственно превратиться в продукты реакции. Так, например, горение октана, одного из компонентов бензина, выражается уравнением 2С8Н18 + 25О2 = 16СО2 + 18Н2О. Однако все 8 атомов углерода и 18 атомов водорода в молекуле октана никак не могут одновременно соединиться с 50 атомами кислорода: для этого должно разорваться множество химических связей и образоваться множество новых. Реакция горения происходит многостадийно — так, чтобы на каждой стадии разрывалось и образовывалось лишь небольшое число химических связей, и процесс состоит из множества последовательно протекающих элементарных реакций, совокупность которых и представляется наблюдателю как пламя. Изучать элементарные реакции сложно прежде всего потому, что концентрации реакционно-способных промежуточных частиц в пламени крайне малы.

Внутри пламени

Оптическое зондирование разных участков пламени с помощью лазеров позволило установить качественный и количественный состав присутствующих там активных частиц — осколков молекул горючего вещества. Оказалось, что даже в простой с виду реакции горения водорода в кислороде 2Н2 + О2 = 2Н2О происходит более 20 элементарных реакций с участием молекул О2, Н2, О3, Н2О2, Н2О, активных частиц Н, О, ОН, НО2. Вот, например, что написал об этой реакции английский химик Кеннет Бэйли в 1937 году: «Уравнение реакции соединения водорода с кислородом — первое уравнение, с которым знакомится большинство начинающих изучать химию. Реакция эта кажется им очень простой. Но даже профессиональные химики бывают несколько поражены, увидев книгу в сотню страниц под названием «Реакция кислорода с водородом», опубликованную Хиншельвудом и Уильямсоном в 1934 году». К этому можно добавить, что в 1948 году была опубликована значительно большая по объему монография А. Б. Налбандяна и В. В. Воеводского под названием «Механизм окисления и горения водорода».

Современные методы исследования позволили изучить отдельные стадии подобных процессов, измерить скорость, с которой различные активные частицы реагируют друг с другом и со стабильными молекулами при разных температурах. Зная механизм отдельных стадий процесса, можно «собрать» и весь процесс, то есть смоделировать пламя. Сложность такого моделирования заключается не только в изучении всего комплекса элементарных химических реакций, но и в необходимости учитывать процессы диффузии частиц, теплопереноса и конвекционных потоков в пламени (именно последние устраивают завораживающую игру языков горящего костра).

Откуда все берется

Основное топливо современной промышленности — углеводороды, начиная от простейшего, метана, и кончая тяжелыми углеводородами, которые содержатся в мазуте. Пламя даже простейшего углеводорода — метана может включать до ста элементарных реакций. При этом далеко не все из них изучены достаточно подробно. Когда горят тяжелые углеводороды, например те, что содержатся в парафине, их молекулы не могут достичь зоны горения, оставаясь целыми. Еще на подходе к пламени они из-за высокой температуры расщепляются на осколки. При этом от молекул обычно отщепляются группы, содержащие два атома углерода, например С8Н18 → С2Н5 + С6Н13. Активные частицы с нечетным числом атомов углерода могут отщеплять атомы водорода, образуя соединения с двойными С=С и тройными С≡С связями. Было обнаружено, что в пламени такие соединения могут вступать в реакции, которые не были ранее известны химикам, поскольку вне пламени они не идут, например С2Н2 + О → СН2 + СО, СН2 + О2 → СО2 + Н + Н.

Постепенная потеря водорода исходными молекулами приводит к увеличению в них доли углерода, пока не образуются частицы С2Н2, С2Н, С2. Зона сине-голубого пламени обусловлена свечением в этой зоне возбужденных частиц С2 и СН. Если доступ кислорода в зону горения ограничен, то эти частицы не окисляются, а собираются в агрегаты — полимеризуются по схеме С2Н + С2Н2 → С4Н2 + Н, С2Н + С4Н2 → С6Н2 + Н и т. д.

В результате образуются частицы сажи, состоящие почти исключительно из атомов углерода. Они имеют форму крошечных шариков диаметром до 0,1 микрометра, которые содержат примерно миллион атомов углерода. Такие частицы при высокой температуре дают хорошо светящееся пламя желтого цвета. В верхней части пламени свечи эти частицы сгорают, поэтому свеча не дымит. Если же происходит дальнейшее слипание этих аэрозольных частиц, то образуются более крупные частицы сажи. В результате пламя (например, горящей резины) дает черный дым. Такой дым появляется, если в исходном топливе повышена доля углерода относительно водорода. Примером могут служить скипидар — смесь углеводородов состава С10Н16 (CnH2n–4), бензол С6Н6 (CnH2n–6), другие горючие жидкости с недостатком водорода — все они при горении коптят. Коптящее и ярко светящее пламя дает горящий на воздухе ацетилен С2Н2 (CnH2n–2); когда-то такое пламя использовали в ацетиленовых фонарях, установленных на велосипедах и автомобилях, в шахтерских лампах. И наоборот: углеводороды с высоким содержанием водорода — метан СН4, этан С2Н6, пропан С3Н8, бутан С4Н10 (общая формула CnH2n+2) — горят при достаточном доступе воздуха почти бесцветным пламенем. Смесь пропана и бутана в виде жидкости под небольшим давлением находится в зажигалках, а также в баллонах, которые используют дачники и туристы; такие же баллоны установлены в автомобилях, работающих на газе. Сравнительно недавно было обнаружено, что в копоти часто присутствуют шарообразные молекулы, состоящие из 60 атомов углерода; их назвали фуллеренами, а открытие этой новой формы углерода было ознаменовано присуждением в 1996 году Нобелевской премии по химии.

Время горения свечей восковых

Восковые свечи – это, как правило, натуральные варианты, которые производят из различного сырья. Наиболее востребованными являются свечи из пчелиного, соевого и кокосового воска. Для восковых свечей характерен долгий процесс горения, в результате которого выделяется углекислый газ в незначительных объемах.

Поэтому восковые варианты являются безопасными для здоровья человека и окружающей среды. Однако, в зависимости от выбранного материала, меняется температура плавления воска и состав выделяемых в воздух компонентов.

Кроме того, все варианты горят ярко по сравнению с парафиновыми свечами и продукцией из искусственного стеарина. После того как свечи полностью прогорают, они приходят в негодность и теряют свою привлекательность. Все восковые свечи имеют одинаковый способ использования. Фитиль поджигают с помощью зажигалки или спичек, который горит, медленного плавя воск.

Свеча красного цвета из натурального пчелиного воска время горения 1 час

Плавление воска физическое явление горение химическое
Свеча красного цвета из натурального пчелиного воска с двойным фитилем ручной работы. Свечи красного цвета с успехом используются в различных ритуалах и магических обрядах, т.к. обладают широким сектором действия. Считается, что красные свечи привлекают любовь, восстанавливают силу и физическое здоровье, помогают в достижении цели. Соответствует 1-ой чакре. Время горения — около 60 минут.

Температура пламени

Для разных горючих паров и газов температура пламени неодинакова. А ещё неодинакова температура разных частей пламени, а область полного сгорания имеет более высокие показатели температуры.

Некоторое количество горючего вещества при сжигании выделяет определённое количество теплоты. Если строение вещества известно, то можно рассчитать объём и состав полученных продуктов горения. А если знать удельную теплоту этих веществ, то можно рассчитать ту максимальную температуру, которую достигнет пламя.

Стоит помнить о том, что если вещество горит в воздухе, то на каждый объём вступающего в реакцию кислорода приходится четыре объёма инертного азота. А так как в пламени присутствует азот, он нагревается теплотой, которая выделяется при реакции. Исходя из этого можно сделать вывод о том, что температура пламени будет состоять из температуры продуктов горения и азота.

Невозможно точно определить температуру, но можно это сделать приблизительно, так как удельная теплота изменяется с температурой.

Вот некоторые показатели по температуре открытого огня в разных материалах.

  1. Горение магния — 2200 градусов.
  2. Горение спирта не превышает температуры 900 градусов.
  3. Горение бензина — 1300−1400 градусов.
  4. Керосина — 800, а в среде чистого кислорода — 2000 градусов.
  5. Горение пропан-бутана может достигать температуры от 800 до 1970 градусов.
  6. При сгорании дерева температурный показатель колеблется от 800 до 1000 градусов, а воспламеняется оно при 300 градусах.
  7. Температурный параметр горения спички составляет 750−850 градусов.
  8. В горящей сигарете — от 700 до 800 градусов.
  9. Большинство твёрдых материалов воспламеняется при температурном показателе в 300 градусов.

Горение восковой свечи это физическое или химическое

Все вещества в природе изменяются. Любое изменение вещества – это явление. Если изменяется агрегатное состояние, форма и объём вещества, а новое вещество не образуется, – это физическое явление.

Если изменяется форма, объём или состояние вещества, а новое вещество не образуется, – это физическое явление. Если одно вещество превращается в другое и образуется новое вещество, – это химическое явление, или химическая реакция. Плавление воска — физическое явление, так как меняется его агрегатное состояние, а горение — химическое, так как образуются новые вещества.

Физические явления при горении свечи

Зажгли свечу. Вокруг фитиля парафин начинает таять. Этот процесс называется плавлением. Взяли изогнутую стеклянную трубку. Один конец ее поместили в пламя свечи, другой опустили в пробирку. Стенки пробирки начинают запотевать. Это явление называется конденсация.

Плавление— физический процесс перехода вещества из твердого состояния в жидкость. Конденсация :— физический процесс перехода вещества из газооб- разного состояния в жидкость.

Виды пламени

Свечение огня делится на два вида:

Почти каждое свечение видимо для человеческого глаза, но не каждое способно испускать нужное количество светового потока.

Свечение пламени обуславливается следующими факторами.

  1. Температурой.
  2. Плотностью и давлением газов, которые участвуют в реакции.
  3. Наличием твёрдого вещества.

Наиболее общая причина свечения — это присутствие в пламени твёрдого вещества.

Многие газы горят слабо светящимся или несветящимся пламенем. Из них наиболее распространены сероводород (пламя голубого цвета как при горении), аммиак (бледно-жёлтое), метан, окись углерода (пламя бледно-голубого цвета), водород. Пары летучих некоторых жидкостей горят едва светящимся пламенем (спирт и сероуглерод), а пламя ацетона и эфира становится немного коптящим из-за небольшого выделения углерода.

Температура горения свечи восковой

Еще со школьного курса физики известно, что у пламени есть несколько температурных зон.

Первая зона низкотемпературная — это синий участок пламени под фитилем. Газы сюда не проникают, поэтому температура колеблется в пределах 600°С. Если быстро провести рукой, получится не обжечься. Таким способом некоторые тушат свечи, просто пережимая фитиль пальцами. Но не повторяйте этого, используйте стакан или специальные гасители.

Во второй зоне активно горение. Температура достигает 800-1000°С. Этот участок ярко-желтый или даже красный. Цвет создают раскаленные частицы углерода. Третья внешняя зона самая горячая — около 1400°С. Тут сгорает весь углерод. Невозможно долго держать ладонь возле пламени, чтобы не обжечься.

Даже самая высокая температура пламени свечи снижается, если объединить их в связки. Явление объясняют так: тесное соседство помогает вытеснить газ за пределы зон горения до того, как он начнет сжигаться. Т.е. огонь горит, но с менее высокой температурой. Она снижена примерно на 15% или 200°С.

Температура горения пламени свечи выше, чем у дерева. Несмотря на то, что пламя — не физическое тело, не имеет постоянной формы, массы, оно опасно. Поэтому не стоит игнорировать правила безопасности и играть с огнем.

Источники:

  • https://ukrcandle.com.ua/blog/how-burn-candle/
  • https://interneturok.ru/lesson/chemistry/8-klass/bpervonachalnye-himicheskie-predstavleniyab/prakticheskoe-zanyatie-3-himicheskie-reaktsii
  • https://stroy-podskazka.ru/aksessuary/svechi/voskovye/
  • https://www.d-modern.com/product/svecha-voskovaya-naturalnaya-22-sm-vremya-goreniya-1-chas-krasnaya

Сварочное пламя

Данный вид огня образуется в результате сгорания смеси из газа или пара жидкости с кислородом чистого воздуха.

Примером служит формирование пламени кислородно-ацетиленового. В нем выделяют:

  • зону ядра;
  • среднюю область восстановления;
  • факельную крайнюю зону.

Так горят многие газокислородные смеси. Различия в соотношении ацетилена и окислителя приводят к разному типу пламени. Оно может быть нормального, науглероживающего (ацетиленистого) и окислительного строения.

Теоретически процесс неполного сгорания ацетилена в чистом кислороде можно охарактеризовать следующим уравнением: HCCH + O 2 → H 2 + CO +CO (для реакции необходима одна моль O 2) .

Полученный же молекулярный водород и угарный газ реагируют с воздушным кислородом. Конечными продуктами является вода и оксид четырехвалентного углерода. Уравнение выглядит так: CO + CO + H 2 + 1½O 2 → CO 2 + CO 2 +H 2 O. Для этой реакции необходимо 1,5 моля кислорода. При суммировании O 2 получается, что 2,5 моль затрачивается на 1 моль HCCH. А так как на практике трудно найти идеально чистый кислород (часто он имеет небольшое загрязнение примесями), то соотношение O 2 к HCCH будет 1,10 к 1,20.

Когда значение пропорции кислорода к ацетилену меньше 1,10, возникает науглероживающее пламя. Строение его имеет увеличенное ядро, очертания его становятся расплывчатыми. Из такого огня выделяется копоть, вследствие недостатка кислородных молекул.

Если же соотношение газов больше 1,20, то получается окислительное пламя с кислородным избытком. Лишние его молекулы разрушают атомы железа и другие компоненты стальной горелки. В таком пламени ядерная часть становится короткой и имеет заострения.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]