Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) — важный элемент, устанавливаемый практически во всех современных блоках питания.
Различные модели импульсных трансформаторов
Конструкция (виды) импульсных трансформаторов
В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:
- стержневом;
Конструкция стержневого импульсного трансформатора - броневом;
Конструкция импульсного трансформатора в броневом исполнении - тороидальном (не имеет катушек, провод наматывается на изолированный сердечник);
Конструкция тороидального импульсного трансформатора - бронестержневом;
Конструктивные особенности бронестержневого импульсного трансформатора
На рисунках обозначены:
- A — магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
- В — катушка из изолирующего материала
- С — провода, создающие индуктивную связь.
Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.
Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.
Область применения
Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.
Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.
Видео: Как работает импульсный трансформатор?
Принцип работы
Основная особенность трансформаторов импульсного типа (далее ИТ) заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.
Схема: подключение импульсного трансформатора
Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.
Временная диаграмма иллюстрирующая работу импульсного трансформатора
На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).
Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L0/Rн
Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax — Вr
- Вmax – уровень максимального значения индукции;
- Вr –остаточный.
Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.
График смещения
Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).
Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.
Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:
при этом:
- Ψ — параметр потокосцепления;
- S – величина, отображающая сечение магнитопроводного сердечника.
Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:
в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.
Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке ИТ, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:
Um x tu=S x W1 x ∆В
Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.
Вторая по значимости величина, характеризующая работу ИТ, — перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:
Здесь:
- L0 — перепад индукции;
- µа — магнитная проницаемость сердечника;
- W1 — число витков первичной обмотки;
- S — площадь сечения сердечника;
- lcр — длинна (периметр) сердечника (магнитопровода)
- Вr — величина остаточной индукции;
- Вmax – уровень максимального значения индукции.
- Hm — Напряженность магнитного поля (максимальная).
Учитывая, что параметр индуктивности ИТ полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.
Видео: подробное описание принципа работы импульсного трансформатора https://www.youtube.com/watch?time_continue=13&v=XYxKfYd8Elk
Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.
Высокочастотным ИТ идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.
Как проверить устройство
После сборки ИТ, его проверяют. Методик, как проверить собранный собственноручно или приобретенный импульсный трансформатор, предостаточно. Для проверки собирают схемы с использованием частотных генераторов, осциллографов, мультиметров и других приборов, которые не только подтверждают работоспособность ИТ.
Они выполняют его тестирование в различных частотных диапазонах. В импульсном трансформаторе не допускается разомкнутое состояние вторичной обмотки, такой режим относится к категории небезопасных режимов.
Как проверить импульсный трансформатор.
Также должны иметь минимальную индуктивность рассеивания, динамическую емкость и сопротивление; быть достаточно прочными механически.
Он должен обладать виброустойчивостью и выдерживать воздействие значительных электродинамических сил, возникающих как в нормальном режиме работы, так и, особенно, при коротких замыканиях цепи нагрузки.
Требования высокой электрической прочности и минимальной индуктивности рассеяния взаимно противоречивы. Так как для увеличения электрической прочности необходимо увеличивать толщину и изоляции, в то время как для уменьшения индуктивности рассеяния требуется уменьшать толщину.
Будет интересно➡ Что такое трансформаторная подстанция
Расчет импульсного трансформатора
Рассмотрим, как необходимо производить расчет ИТ . Заметим, КПД устройства напрямую связано с точностью вычислений. В качестве примера возьмем схему обычного преобразователя, в которой используется ИТ тороидального вида.
Схема преобразователя
В первую очередь нам потребуется вычислить уровень мощности ИТ, для этого воспользуемся формулой: Р=1,3 х Рн.
Значение Рн отображает, сколько мощности будет потреблять нагрузка. После этого рассчитываем габаритную мощность (Ргб), она должна быть не меньше мощности нагрузки:
Необходимые для вычисления параметры:
- Sc – отображает площадь сечения тороидального сердечника;
- S0 – площадь его окна (как наитии это и предыдущее значение показано на рисунке);
Основные параметры тороидального сердечника
- Вмакс – максимальный пик индукции, она зависит от того, какая используется марка ферромагитного материала (справочная величина берется из источников, описывающих характеристики марок ферритов);
- f – параметр, характеризующий частоту, с которой преобразуется напряжение.
Следующий этап сводится к определению количества витков в первичной обмотке Тр2:
(полученный результат округляется в большую сторону)
Величина UI определяется выражением:
UI=U/2-Uэ ( U – питающее преобразователь напряжение; Uэ— уровень напряжения, поступающего на эмиттеры транзисторных элементов V1 и V2).
Переходим к вычислению максимального тока, проходящего через первичную обмотку ИТ:
Параметр η равен 0,8, это КПД, с которым должен работать наш преобразователь.
Диаметр используемого в обмотке провода вычисляется по формуле:
Осталось рассчитать выходную обмотку ИТ, а именно, количество витков провода и его диаметр:
Если у вас возникли проблемы с определением основных параметров ИТ, в интернете можно найти тематические сайты, позволяющие в онлайн режиме рассчитать любые импульсные трансформаторы.
Разновидности
Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:
- Тороидальный.
Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.
Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.
Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.
Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.