Понятие группы соединения обмоток трансформаторов, таблицы и схемы

Любой трансформатор, за исключением автотрансформатора, имеет минимум две обмотки: высокого и низкого напряжений. Также у трехфазных устройств каждая из обмоток состоит из трех частей (по числу фаз). Большое количество частей дает возможность множества вариантов включения. Чтобы избежать путаницы, все группы соединения обмоток трансформатора для трехфазных устройств стандартизированы и приведены к единой системе для безошибочного подключения устройств и возможности параллельной работы.

Понятие группы соединение обмоток трехфазного трансформатора

В трехфазных сетях используется два вида соединений: звезда и треугольник. При изготовлении конструкций может показаться, что существует всего четыре вида расположения обмоток:

  1. Звезда-звезда.
  2. Звезда-треугольник.
  3. Треугольник-звезда.
  4. Треугольник-треугольник.

На деле все обстоит сложнее, поскольку в каждом виде соединений (звезде или треугольники) части обмоток могут быть соединены по-разному. В качестве примера можно привести обычных двухобмоточный трансформатор. Если у такого устройства совпадают начала и концы обмоток, то сдвиг фаз будет равен 0. Разворот одной из обмоток даст сдвиг фаз 1800.

Также встречаются z-образные соединения обмоток (зигзаг). В таких конструкциях каждая из обмоток состоит из двух частей, расположенных на различных стержнях магнитопровода трансформатора.

Трехфазная сеть характеризуется сдвигом фаз одна относительно другой на 1200. Поэтому всего насчитывается 12 групп соединения. Каждая группа характеризуется определенным сдвигом одноименных фаз на входе и выходе трансформатора.

Как сфазировать обмотки трансформатора?

На электрических схемах принято отмечать жирной точкой начало намотки отдельных катушек трансформатора, если это необходимо. Но, выводы катушек реального трансформатора могут не иметь вообще никакой маркировки.

При прозвонке неизвестного трансформатора, может понадобиться определить начало намотки некоторых катушек.

Например, если две отдельные части первичной обмотки включить навстречу друг другу, то они просто могут выйти из строя. На картинке изображён трансформатор, у которого первичная обмотка состоит из двух частей и эти части подключены в противофазе, что недопустимо (!).

Для фазировки обмоток можно использовать стрелочный вольтметр постоянного тока и батарейку (химический элемент питания) включённые по приведённой схеме.

Диапазон измеряемого напряжения вольтметра нужно подобрать так, чтобы было хорошо заметно движение стрелки. Начинать лучше с большего диапазона.

Если при замыкании выключателя, стрелка вольтметра отклонилась в прямом направлении, то за начало фазируемых обмоток нужно принять «+» (плюс) батареи и «+» вольтметра.

Если стрелка отклонилась в обратном направлении, обмотки подключены в противофазе относительно «+» батареи и «+» вольтметра.

Get the Flash Player to see this player.

Нужно иметь в виду, что при замыкании выключателя, стрелка вольтметра будет отклоняться в одну сторону, а при размыкании в противоположную, из-за возникшей ЭДС самоиндукции. Ориентироваться нужно по отклонению стрелки именно в момент включения выключателя.

При подключении катушек витых стержневых или штампованных стержневых трансформаторов, у которых два симметрично расположенных каркаса, нужно иметь в виду, что силовые магнитные линии выходят из одного каркаса, но входят в другой.

На картинке изображён трансформатор, у которого первичная обмотка состоит из двух симметричных катушек с выводами 1, 2 и 1’, 2’. Катушки расположены на двух симметрично расположенных друг относительно друга каркасах.

Например, чтобы соединить катушки такого трансформатора последовательно, нужно соединить выводы 2 и 2’, а сеть подключить к выводам 1, 1’.

Вернуться наверх к меню

Условные обозначения и расшифровка

Группы маркируются числами от 0 до 11. Для удобства и стандартизации принято следующее:

  • однотипные соединения (∆/∆, Y/Y) имеют четные номера;
  • разнотипные соединения (∆/Y, Y/∆) – нечетные.

Трехфазные трансформаторы выполняются на стержневых магнитопроводах. Каждая из фаз располагается на отдельном стержне. Это во многом упрощает дальнейшую работу и согласование устройств между собой.

Если у трансформатора одинаковые фазы намотаны на одних стержнях, то группы соединений при этом называются основными (0, 6, 11, 5). Остальные группы – производные.

Так как минимальный сдвиг фаз может составлять 300, то количество вариантов равно 12, что соответствует положениям стрелок часов. 0-е и 12-е положения совпадают. На основании этого говорят, что номер группы совпадает с положением часовой и минутной стрелок. Сдвиг фаз вычисляется просто:

Номер группы*300.

Приняты следующие обозначения на электросхемах и устройствах:

  • Y, У – звезда;
  • Yн, Ун – звезда на стороне низкого напряжения;
  • Yо, Уо – звезда с нулевой точкой;
  • ∆, Д, D – треугольник;
  • ∆н, Дн, Dн – треугольник на стороне низкого напряжения.

Пример маркировки двухобмоточного трансформатора:

  • ∆/Yн – 11. Первичная обмотка треугольник, вторичная (понижающая) звезда. Сдвиг фаз 3300;
  • Y/Yо -0. Обе обмотки соединены звездой, вторичная с выведенной нулевой точкой. Сдвиг фаз отсутствует.

Также на электрических схемах обмотки высокого напряжения (ВН) обозначают символами:

  • A,B, C – начало обмотки;
  • X, Y, Z – конец обмотки.

Аналогично для стороны низкого напряжения:

  • a, b, c;
  • x, y, z.

Подобным образом маркируются многообмоточные устройства, например:

Yо/Y/∆ – 0 – 11.

Вместо нулевой группы может указываться двенадцатая, что совершенно равнозначно.

Устройство трансформатора

Магнитопровод. Трансформаторы могут быть трех видов: стержневые, броневые и тороидальные, принадлежность к одной из групп определяет конфигурация магнитопровода.

На рис. 1а изображен стержневой трансформатор. Стержни магнитопровода 1 охватывают обмотки 2. В броневом трансформаторе, который изображен на рис. 1б, наоборот, обмотки 2 частично охвачены магнитопроводом 1, который как бы служит броней обмоткам. Обмотки в трансформаторе тороидального типа (рис. 1в) равномерно распределены по окружности магнитопровода 1.

Рис. 1. Устройство стержневого (а), броневого (б) и тороидального (в) трансформаторов

Трансформаторы, имеющие среднюю и большую мощность, как правило, изготавливают стержневыми. Их конструкция наиболее простая, что облегчает процессы осуществления изоляции и ремонтные работы на обмотках. Их плюсами можно назвать лучшее охлаждение, поэтому обмоточных проводов расходуется меньше. Маломощные однофазные трансформаторы изготавливают броневого или тороидального типа, их вес и стоимость меньше, по сравнению со стержневыми, так как уменьшается число катушек и упрощается их изготовление и сборка. Тяговые трансформаторы, в которых регулировка осуществляется на той стороне, где сопротивление меньше, делают стержневыми, если же регулировка осуществляется на стороне большего напряжения — броневыми.

Для изготовления магнитопроводов трансформаторов используется листовая электротехническая сталь с целью уменьшения потерь, вызываемых вихревыми токами (рис. 2). Берут лист, толщина которого не превышает 0,35-0,5 мм.

Рис. 2. Магнитопроводы однофазного тягового (а) и силового трехфазного (б) трансформаторов: 1 — стержень; 2 — ярмовые балки; 3 — стяжные шпильки; 4 — основание для установки катушек; 5 — ярмо

В основном, используют горячекатаную сталь с большим содержанием кремния, также может использоваться холоднокатаная сталь. Листы изолируются с использованием лака или тонкой бумаги. У среднемощного трансформатора стержни магнитопровода могут иметь сечение в виде квадрата или креста, у самых мощных сечение ступенчатое, почти круглой формы (рис. 3, а). Такое сечение позволяет сделать периметр стержня минимальным при заданной величине площади поперечного сечения, это дает возможность уменьшить длину витков обмоток и, соответственно, минимизировать расход обмоточных проводов. В наиболее мощных трансформаторах делают каналы между стальными пакетами, из которых состоят стержни.

Ширина таких каналов варьируется в пределах 5—6 мм, в них происходит циркуляция охлаждающего масла. Сечение ярма, соединяющего стержни, обычно имеет прямоугольную форму, а его площадь должна быть на 10—15% больше, чем площадь сечения стержней. Благодаря этому сталь нагревается меньше, минимизируются потери мощности.

Собирается магнитопровод для силовых трансформаторов из листов, имеющих прямоугольную форму. Ярмо и стержни сочленяются так, чтобы их листы перекрывались внахлест. Для этого листы смежных слоев сердечника собирают таким образом (рис. 3, б, г): листами ярма 3, 4 и стержней 1, 3 последующих слоев перекрываются стыки в соответствующих листах слоя предыдущего. Тем самым в местах сочленения магнитное сопротивление значительно снижается. Финишная сборка магнитопровода осуществляется после того, как катушки установлены на стержни (рис. 3 в).

В маломощных устройствах сборочный процесс магнитопроводов производится из штампованных стальных листов, имеющих Ш- и П-образную форму, либо берут штампованные кольца (рис. 4 а—в).

Широко распространены и магнитопроводы (рис. 4, г—ж), навивка которых осуществляется узкой лентой из электротехнической стали (холоднокатаной) либо из сплавов железа и никеля.

Обе обмотки, первичная и вторичная, с целью улучшить магнитную связь, располагают на самом малом допустимом расстоянии друг от друга, при этом на каждый стержень магнитопровода ставят одну или две обмотки 2 и 3.

Рис. 3 Формы поперечного сечения (а) и последовательность сборки магнитопровода (б — г)

Рис. 4. Сердечники однофазных трансформаторов малой мощности, собранные из штампованных листов (о, б), колец (в) и стальной ленты (г—ж)

Обмотки размещаются концентрически одна сверху другой (рис. 5, а). Возможно и выполнение обмоток 2 и 3 как перемежающихся секций из дисков — катушек (рис. 5, б). Для первого случая обмотки именуются концентрическими, во втором варианте — чередующимися (дисковыми). В основном, в силовых трансформаторах применяются концентрические обмотки, ближе к стержням расположена низковольная обмотка, которой требуется меньшая изоляция от магнитопровода трансформатора, высоковольтная обмотка расположена снаружи.

Бывает и так, что в трансформаторах броневого вида применяются дисковые обмотки. Тогда по краям стержня ставят катушки от низковольтной обмотки. Соединяться отдельные катушки могут последовательно или параллельно. В трансформаторах ЭПС у вторичной обмотки имеется несколько выводов, служащих для изменения напряжения, которое подается к тяговым двигателям, тогда на каждый стержень ставятся по три концентрические обмотки (рис. 5, в). Нерегулируемую часть 4 обмотки вторичной размещают ближе к стержню, а в центре размещают первичную обмотку 5 большего напряжения, над ней располагается регулируемая часть 6 вторичной обмотки. Так как регулируемая часть данной обмотки размещена снаружи, выполнение выводов от ее витков значительно упрощается.

В трансформаторах небольшой мощности применяют многослойные обмотки, провод имеет сечение круглой формы, изоляция может быть эмалевой или хлопчатобумажной. Провод накручивают на каркас, сделанный из электрокартона. Изоляция слоев производится прокладками, сделанными из специальной бумаги, также используется пропитанная лаком ткань.

Рис. 5. Расположение концентрических (а), дисковых (б) и концентрических трехслойных (в) обмоток трансформатора

В мощных трансформаторах, стоящих на ЭПС, тяговых подстанциях и т.п., применяют обмотки спиральные непрерывные (рис. 6, а) и параллельные винтовые (рис. 6, б), характеризующиеся высокой надежностью и большой механической прочностью. Непрерывная обмотка в виде спирали служит первичной (высокого напряжения) и регулируемой частью вторичной обмотки (низкого напряжения). Составляет такую обмотку ряд плоских катушек, имеющих один и тот же размер и соединенных последовательно между собой. При этом расположены они одна над другой. Разделяют их прокладки и рейки, сделанные из электрокартона. Этими деталями образованы каналы (горизонтальные и вертикальные), по каналам идет масло (охлаждающая жидкость).

Чтобы повысить электрическую прочность при воздействиях атмосферного напряжения, первые и последние пары катушек первичной (высоковольтной) обмотки изготавливают с усиленной изоляцией. Фактор усиленной изоляции ухудшает охлаждение. Чтобы избежать этого, провода этих катушек должны иметь площадь сечения больше, чем у иных катушек высоковольтной обмотки (первичной).

Винтовую параллельную обмотку применяют как нерегулируемую часть вторичной обмотки. Витки этой обмотки наматывают в направлении оси аналогично винтовой резьбе. Обмотка делается из определенного числа параллельных проводов, сечением прямоугольной формы. Эти провода друг к другу прилегают в радиальном направлении. Разделяют отдельные витки и целые группы проводов каналы с циркулирующей по ним охлаждающей жидкостью.

Рис. 6. Непрерывная спиральная (а) и винтовая (б) обмотки мощных трансформаторов электрического подвижного состава: 1 — выводы; 2,6 — каналы для прохода охлаждающей жидкости; 3 — катушки; 4 — опорные кольца; 5 — рейки; 7 — бакелитовый цилиндр; 8 — проводники обмотки

Рис. 7. Устройство трансформаторов общего назначения (а) и тягового (б) с масляным охлаждением: 1— термометр; 2 — выводы обмотки высшего напряжения; 3—выводы обмотки низшего напряжения; 4, 6 — пробки для заливки масла; 5 — масломерное стекло; 7 — расширитель; 8 — сердечник; 9, 10 — обмотки высшего и низшего напряжений; 11 — пробка для спуска масла; 12 —бак для охлаждения масла; 13 — трубы для охлаждения масла; 14 — теплообменник; 15 — воздуховоды; 16, 18 — стойки для установки переключателя выводов трансформатора; 17 — заводской щиток; 19 — насос для циркуляции масла; 20 — опорные балки

Количество параллельных проводов зависит от величины тока, который будет проходить по обмотке.

Охлаждающая система. Применяемый способ охлаждения трансформатора определяет его номинальная мощность. Чем она больше, тем интенсивнее должно производиться охлаждение трансформатора.

В трансформаторах небольшой мощности обычно применяют естественное охлаждение воздухом, называются такие устройства «сухими». Тепло от нагреваемых поверхностей магнитопровода и обмоток в них отводится прямо в окружающий воздух. Иногда маломощные трансформаторы находятся в корпусе, который заполняют термореактивными компаундами, основа которых — эпоксидные смолы либо подобные материалы.

В трансформаторах, мощность которых средняя или большая, сердечник и обмотки полностью погружены в бак с минеральным маслом (трансформаторным), его подвергают тщательной очистке (рис. 7, а). Такой способ теплоотвода называется естественное масляное охлаждение. Трансформаторному маслу свойственна более высокая теплопроводность, чем воздуху, оно лучше отводит тепло к стенкам бака от сердечника и обмоток. Площадь охлаждения у бака больше, нежели у трансформатора. А еще погружение трансформатора в бак, заполненный маслом, позволяет повысить электрическую прочность изоляции обмоток и уменьшить ее старение под воздействием атмосферных явлений. Баки для трансформаторов, имеющих мощность 20-30 кВА, изготавливают с гладкими стенками. Для трансформаторов большей мощности (к примеру, стоящих на тяговых подстанциях), с целью повысить теплоотдачу, площадь охлаждения увеличивают, используя трубчатые баки или баки с ребристыми стенками. Масло, нагревающееся в баке, поднимается вверх, а масло, охлаждающееся в трубах, спускается вниз. Создается естественная циркуляция, которая улучшает охлаждение трансформатора.

На ЭПС переменного тока ставят трансформаторы масляного охлаждения, циркуляция масла в них – принудительная, оно идет через теплообменник, который охлаждается воздухом (рис. 7, б). Подобная система охлаждения позволяет увеличить индукцию в сердечнике, в обмотках — плотность тока, таким образом уменьшают массу и размеры трансформатора. В охлаждающую систему обычно ставят струйное реле, чтобы не дать трансформатору включиться, когда в нем нет циркуляции масла.

При работающем трансформаторе масло нагревается, его объем увеличивается. Когда нагрузка уменьшается, оно остывает, и объем становится прежним. Из-за этого масляные трансформаторы комплектуют дополнительным баком — это расширитель, который соединен с внутренней частью основного бака. Как только трансформатор нагревается, масло переходит в расширитель. Использование расширителя ведет к уменьшению площади соприкосновения масла с воздухом, уменьшается загрязнение и увлажнение масла.

Когда трансформатор работает, нагретое масло разлагается и загрязняется, поэтому оно требует периодической очистки и замены. Чтобы избежать взрыва и пожара, масляные трансформаторы стоят в огражденных помещениях. Максимум допустимой температуры для обмоток — 105°С, сердечника — 110°С, верхнего слоя масла — 95°С. Чтобы предотвратить аварийные ситуации, устройства большой и средней мощности оснащают газовыми реле, их ставят прямо в трубопроводе, между расширителем и главным баком. Если взрывоопасные газы, которые образуются при разложении масла, собираются в большом количестве, такое газовое реле выключит трансформатор в автоматическом режиме, предотвращая возможность аварии. На трансформаторы, мощность которых составляет более 1000 кВА, ставят и выхлопную трубу, закрываемую мембраной из стекла. Большое количество газов выдавит мембрану и выйдет в атмосферу, это исключает деформирование бака.
Трансформаторы многообмоточные. Самое большое распространение имеют однофазные двухобмоточные трансформаторы (рис. 8, а). Если нужно получить от одного трансформатора не одно, а несколько разных напряжений u21, u22, u23 (рис. 8, б), применяются многообмоточные трансформаторы. Их магнитопровод имеет несколько вторичных обмоток, причем все они имеют разное число витков. Например, у тяговых трансформаторов, используемых в электровозах, есть четыре обмотки: одна — высоковольтная первичная и три — низковольтные вторичные. При этом одна (тяговая) должна питать цепи тяговых двигателей через выпрямитель, в то время как вторая обеспечивает питание собственных электропотребителей (цепи вспомогательных машин, освещение, управление и т.д.), третья предназначена для обеспечения питанием электрических отопительных печей вагонов для пассажиров. Если конструкцией электровоза предусмотрено рекуперативное торможение, то применяется особая вторичная обмотка, которая служит для обеспечения электропитанием возбуждающих обмоток тяговых двигателей, работающих в этом режиме. Есть и такие модели электровозов, в которых питание для всех тяговых двигателей предусмотрено от собственного выпрямителя, при этом трансформатор делается с соответствующим числом вторичных обмоток.

Рис. 8. Схемы двухобмоточного (а) и многообмоточного (б) трансформаторов

Как строятся векторные диаграммы

При построении векторных диаграмм надо запомнить правило, что сдвиг фаз меду фазами равняется 1200, то есть, при равенстве напряжений, концы векторов всегда будут образовывать равносторонний треугольник.

Наиболее просто составляется диаграмм для соединения звезда. В центре диаграммы ставится точка, которая соответствует объединенным концам обмоток. Из центра под углами 1200 проводятся векторы фаз. Вертикально проводят вектор средней фазы.

Для треугольника начерно проводят линию, параллельную соответствующей фазы звезды, а от ее концов, соответственно, подсоединенные к ней оставшиеся две фазы. Должно соблюдаться условие – все стороны треугольника должны быть параллельны соответствующим фазам звезды. Искомыми векторами будут проведенные линии из центра треугольника к его вершинам.

Векторные диаграммы рисуются для высокой и низкой сторон, а затем совмещаются с единым центром. Угол между одинаковыми фазами будет показывать номер группы соединения, выраженный в часах.

Отсчет нужно брать от вектора высокого напряжения к низкому.

Таблица групп соединений

В таблице ниже представлены обозначения групп соединения и чередование фаз низкой и высокой сторон.

Группа соединенияОбозначениеЧередование фаз
0Y/Y-0C, B, A
c, b, a
∆/∆-0C, B, A
c, b, a
1Y/∆-1C, B, A
c, b, a
∆/Y-1C, B, A
c, b, a
2Y/Y-2C, B, A
c, b, a
∆/∆-2C, B, A
а, c, b
3Y/∆-3C, B, A
b, a, с
∆/Y-3C, B, A
b, a, с
4Y/Y-4C, B, A
b, a, с
∆/∆-4C, B, A
b, a, с
5Y/∆-5C, B, A
c, b, a
∆/Y-5C, B, A
c, b, a
6Y/Y-6C, B, A
c, b, a
∆/∆-6C, B, A
c, b, a
7Y/∆-7C, B, A
c, b, a
∆/Y-7C, B, A
c, b, a
8Y/Y-8C, B, A
а, c, b
∆/∆-8C, B, A
c, b, a
9Y/∆-9C, B, A
b, a, с
∆/Y-9C, B, A
b, a, с
10Y/Y-10C, B, A
c, b, a
∆/∆-10C, B, A
b, a, с
11Y/∆-11C, B, A
c, b, a
∆/Y-11C, B, A
c, b, a

Определение методом гальванометра

Существует несколько способов определить правильность подсоединения обмоток. Самый простой способ – использование вольтметра магнитоэлектрической системы. Его еще называют методом постоянного тока.

Для этого к концам проверяемой обмотки подключают измерительный прибор, а на другую обмотку подают постоянное напряжение. Отклонение стрелки в момент замыкания ключа покажет полярность подключения обмотки. Такие действия производятся для каждой обмотки.

Также можно воспользоваться простым вольтметром при подключении переменного напряжения. Для этого на одну из обмоток подают пониженное переменное напряжение, а остальные две обмотки соединяют последовательно и подключают к вольтметру. Отсутствие или слишком малые показания говорят о том, что обмотки включены встречно.

Проверка

Если известен коэффициент трансформации, то при помощи вольтметра можно определить номер основной группы соединения. Для этой цели подают напряжение на концы А и а или x и y и измеряют напряжения на выводах В-в и С-с при соединении звездой или B-y и C-z при соединении треугольником. Для проверки используют следующие соотношения:

UBb = UCc = UAa(k-1) Группа Y/Y-0

UBy = UCz = Uxy(k+1) Y/Y-6

UBb = UCc = UAa(√(1-√3k+k2)) Y/∆-11

UBy = UCz = Uxy(√(1+√3k+k2)) Y/∆-5

Для исключения повреждения оборудования, возникновения аварийных ситуаций и травмирования, все измерения следует производить при низком напряжении, не включая оборудование в основную сеть предприятия.

Принцип действия трансформатора

При подаче напряжения на первичную обмотку в ней наводится ЭДС самоиндукции. Силовые линии магнитного поля пронизывают не только ту катушку, которая наводит ток, но и расположенную на том же сердечнике вторую катушку (вторичную обмотку) и наводит также в ней ЭДС самоиндукции. Отношение числа витков первичной обмотки к вторичной называется Коэффициентом трансформации. Записывается это так:

  • U1 =напряжение первичной обмотки.
  • U2 = напряжение вторичной обмотки.
  • w1 = количество витков первичной обмотки.
  • w2 = количество витков вторичной обмотки.
  • кт = коэффициент трансформации.

Коэффициент трансформации — формула

Если коэффициент трансформации меньше единицы, то трансформатор повышающий, если больше единицы, понижающий. Разберем на небольшом примере: w1 количество витков первичной обмотки равно условно равно 300, w2 количество витков вторичной обмотки равно 20. Делим 300 на 20, получаем 15. Число больше единицы, значит трансформатор понижающий. Допустим, мы мотали трансформатор с 220 вольт, на более низкое напряжение, и нам теперь нужно посчитать, какое будет напряжение на вторичной обмотке. Подставляем цифры: U2=U1\кт = 220\15 = 14.66 вольт. Напряжение на выходе с вторичной обмотки будет равно 14.66 вольт.

Примеры групповых соединений обмоток

Государственным стандартом предусмотрены только две группы соединения обмоток:

  1. Y/Y-0 или ∆/∆-0
  2. Y/∆-11 и ∆/Y-11

Жесткая стандартизация позволяет исключить аварии и повреждения в результате неправильных подключений. К тому же, для трансформаторов одинаковой мощности и коэффициента трансформации становится возможным параллельное включение устройств.

Остальное количество соединений используется крайне редко в отдельных случаях при невозможности использования стандартного варианта.

Тип подключения должен быть оговорен в сопроводительной документации и продублирован на шильдике устройства.

Выбор схемы соединения обмоток трансформатора

При проектировании трансформаторных подстанций приходится выбирать трансформатор не только по мощности, но и в зависимости схемы соединения обмоток. Ошибиться с выбором схемы соединения обмоток достаточно сложно, но, тем не менее, нужно знать требования ТНПА.

Трансформаторные подстанции (КТП) я проектирую достаточно редко, т.к. крупные объекты попадаются нам не так часто, как хотелось бы.

Раньше на схему соединения обмоток трансформатора я не обращал внимания: рисовал «треугольник-звезда» и никто даже не замечал ошибки, а если и замечали, то уже на стадии закупки трансформатора. Не в каждом проекте, но в нескольких проектах такое могло быть.

Данная ошибка не влечет каких-то серьезных последствий, поскольку не все трансформаторы изготавливают со схемой «треугольник-звезда» и производитель может сам заменить трансформатор на нужное исполнение.

В нормативных документах я нашел следующие требования по выбору схемы соединения обмоток трансформатора:

ТКП 45-4.04-296-2014 (Силовое и осветительное электрооборудование промышленных предприятий):

6.2.1 … По условиям надежности действия защиты от однофазных замыканий в сетях напряжением до 1000 В с глухозаземленной нейтралью рекомендуется применять трансформаторы со схемой соединения обмоток «звезда-зигзаг» при мощности до 250 кВА и со схемой «треугольник-звезда» — при мощности 400 кВА и более.

ТКП 385-2012 (02230) (Нормы проектирования электрических сетей внешнего электроснабжения напряжением 0,4-10кВ сельскохозяйственного назначения):

9.6 В электрических сетях 0,4-10 кВ следует применять:

— герметичные трансформаторы (ТМГ), допускается применение масляных трансформаторов ™ и сухих трансформаторов (в КТПБ);

— трансформаторы со схемами соединения обмоток «звезда-звезда» с симметрирующим устройством — при мощности до 250 кВА, «треугольник-звезда» — при мощности 400 кВА и более и «звезда-зигзаг с нулем» (без симметрирующего устройства) – при мощности трансформатора до 160 кВА и неравномерной фазной нагрузке.

НТП ЭПП-94 (Проектирование электроснабжения промышленных предприятий):

6.4.9. Трансформаторы цеховых ТП мощностью 400 — 2500 кВА выпускаются со схемами соединения обмоток «звезда-звезда» с допустимым током нулевого вывода, равным 0,25 номинального тока трансформатора, или «треугольник-звезда» с нулевым выводом, рассчитанным на ток, равный 0,75 номинального тока трансформатора. По условиям надежности действия защиты от однофазных КЗ в сетях напряжением до 1 кВ и возможности подключения несимметричных нагрузок предпочтительным является применение трансформаторов со схемой соединения «треугольник-звезда».

Как видите, схема соединения обмоток трансформатора зависит от мощности трансформатора и выбрать нужную схему соединения очень просто.

Советую почитать:

Нужно ли УЗО для световой рекламы?

Выбор защитного аппарата для УЗИП

Чем плох электромагнитный контактор?

Автоматические выключатели на токи до 4000 А

Ошибочные обозначения

Ошибочные включения возникают при несоблюдении правил подключения концов. Это происходит в результате неправильной намотки или неправильном обозначении. В результате при включении устройства в трехфазную сеть, обмотки, включенные встречно, компенсируют магнитные потоки друг у друга, поэтому через них начинает протекать ток, ограниченный лишь активным сопротивлением обмоточного провода, что равносильно короткому замыканию.

Чтобы исключить случаи неправильного включения, рекомендуется после ремонта оборудования или перед включением неизвестных устройств тщательно проверить фазировку каждой обмотки несколькими методами для исключения возможных ошибок.

Уменьшить вероятность ошибки поможет предварительный расчет напряжений для измерений по методу вольтметра. Полученные данные служат ориентировочными значениями, на которые нужно обращать внимание при проведении последующих измерений.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]