Червячный редуктор: описание.виды.принцип работы,ремонт,фото,видео.


Червячный редуктор нередко считается важною деталью не только в сфере производства автомобилей. Червячная передача считается важной деталью везде, где требуется увеличить крутящий момент и уменьшить количество вращений привода. Такой механизм используется для привода ворот, подъемников, станков для обработки металлов, дерева и других подобных устройств. Практически каждый человек видел червячный редуктор, иногда даже не подозревая об этом.

Дело в том, что нередко такой механизм привода прячут в корпус, чтобы механизм не забивался пылью и прочим мусором, и это существенно продлевает срок службы механизма. Червячный редуктор так часто используется по причине того, что коэффициент полезного действия этого механизм очень высок. Такой механизм может иметь как маленькие размеры, так и большие.

Из-за своих небольших размеров чаще всего червяная передача применяется в производстве автомобилей. Каждый преобразователь имеет свое передаточное число. Такое число зачастую указывается на упаковке прибора, либо на самом корпусе.

Достоинства и недостатки

Червячная передача в силу своих конструктивных особенностей имеет как достоинства, так и недостатки.

Из достоинств стоит отметить плавность хода, эффект самоторможения, низкий уровень шума, большое передаточное отношение с использованием всего двух деталей.

Из недостатков следует обратить внимание на сравнительно низкий КПД, повышенный износ, заедание, большое тепловыделение вследствие сил трения. Низкий КПД обуславливает применение подобных механизмов при передаче относительно небольших мощностей до 100 кВт. Для предотвращения скорого износа и заедания необходимо соблюдать требования к точности сборки и регулировать механизмы. Высокое тепловыделение требует специальных установок для отвода лишнего тепла.

Различие редукторов в основном сводится к различиям червяков и зубчатых колес, из которых собран данный червячный редуктор.

Червяки разделяются на типы по следующим признакам:

  • по количеству заходов резьбы: однозаходные, многозаходные
  • по направлению нарезки резьбы: правые, левые
  • по форме винта, на котором нарезана резьба: цилиндрические, глобоидные
  • по форме профиля резьбы: с конволютным профилем, с архимедовым профилем, с эвольвентным профилем
  • Зубчатые колёса разделяются на типы по следующим признакам:
  • по типу колеса: собственно колесо, зубчатый сектор, вырожденный сектор
  • по профилю зубьев: прямой, вогнутый, роликовый (вместо зубьев используется вращающийся ролик)

Червячные редукторы со встроенным двигателем называются червячными мотор-редукторами. В редукторах чаще всего двигательный вал располагается под прямым углом к движимому. Компоновка червячного редуктора выбирается исходя из конкретных требований к устройствам. Двигатель может располагаться как сверху приводимого в движение колеса, так и снизу и сбоку. При боковом расположении двигатель устанавливается вертикально. Вследствие вертикального расположения усложняется процесс смазки подшипников вала, а также чистки внешних элементов.

Для увеличения передаточного числа используются разные технологии, но наиболее эффективной является применение большего числа ступеней.

Для смягчения сил трения и повышения сопротивления заеданию применяются специальные вязкие смазочные составы или масла. При низких скоростях вращения смазка осуществляется при помощи специальных ванночек с маслом либо использованием специальных устройств, разбрызгивающих смазку в места повышенного трения. Для червячных редукторов, скорость вращения которых высока применение ванночек нецелесообразно, и применяется принудительная смазка охлаждёнными смазочными материалами.

Основные преимущества редуктора червячного перед зубчатыми передачами заключаются в том, что начальный контакт звеньев происходит не в точке, а по линии. Также входной и выходной валы могут скрещиваться под разными углами, но чаще всего этот угол составляет 90 градусов. Также червячная передача занимает гораздо меньше места, чем зубчатая при одинаковом большом передаточном отношении.

Помимо червячного редуктора червячная передача также применяется в системах регулирования и управления различными устройствами. Благодаря самоторможению обеспечивается точная фиксация положения, а большое передаточное отношение (до 1000) позволяет наиболее точно отрегулировать положение, либо использовать маломощные двигатели. Также червячные передачи и червячные редукторы отлично подходят для установки в качестве механизма передачи в подъёмные и лебёдочные механизмы благодаря своим конструктивным особенностям.

Некоторые технические характеристики промышленно производимых и широко распространённых червячных редукторов.

Самыми распространёнными являются одноступенчатые мотор-редукторы.

ТипПередаточное числоЧастота вращения выходного вала об/минНоминальный крутящий момент на выходном валу Нм
редуктормотор-редуктор
Ч-20МЧ-205 — 5028 — 3004
Ч-25МЧ-256
Ч-31,5МЧ-31,58
2Ч-40МЧ-405 — 809,37 — 30028 — 37
Ч-50МЧ-5050 — 70
1Ч-63, 2Ч-63МЧ-635 — 807,5 — 30095 — 135
1Ч-80, 2Ч-80, Ч-80МЧ-80150 — 280
Ч-100МЧ-100315 — 570
Ч-125МЧ-125615 — 1000
Ч-160МЧ-1601100 — 1900
Ч-200МЧ-2001600 — 3100
Ч-250МЧ-2502700 — 5700
Ч-320МЧ-3204400 — 10000
Ч-400МЧ-4006500 — 19000
Ч-500МЧ-5008200 — 33000
РЧН-180МРЧН-18012,5 — 5020 — 901300 — 1800
РЧП-300МРЧП-30016, 25, 5020 — 404200

Лекция № 6. Червячные передачи (ЧП)

Вопросы, изложенные в лекции:

1. Определение, классификация ЧП.

2. Геометрия, кинематика и динамика ЧП.

3. Материалы и изготовление ЧП.

Определение и классификация ЧП.

В предыдущих лекциях рассмотрены конструкция и параметры зубчатых передач с зацеплениями некоторых типов. В этих передачах в качестве подвижных звеньев фигурируют зубчатые колеса, сидящие на вращающихся валах. Кроме подобных зубчатых передач в технике получили широкое распространение передачи, имеющие зубчато-винтовое зацепление – червячные передачи

(механизмы натяжения гусениц БМП и танков, привод лебёдки БТР-80, главные передачи некоторых тяжелых грузовых автомобилей).

Червячная передача – это передача, два подвижных звена которой, червяк и червячное колесо, образуют совместно высшую зубчато-винтовую кинематическую пару, а с третьим, неподвижным звеном, низшие вращательные кинематические пары.

Рис. 6.1. Червячная передача: 1 –червяк; 2 –червячное колесо.

Как следует из определения, червячная передача обладает свойствами как зубчатой (червячное колесо на своем ободе несет зубчатый венец), так и винтовой (червяк имеет форму винта) передач. Червячная передача, также как и винтовая, характеризуется относительно высокими скоростями скольжения витков червяка по зубьям червячного колеса.

Достоинства червячных передач: 1) компактность и относительно небольшая масса конструкции; 2) возможность получения больших передаточных чисел в одной ступени – стандартные передачи u £ 80, специальные — u ³ 300; 3) высокая плавность и кинематическая точность; 4) низкий уровень шума и вибраций; 5) самоторможение при обратной передаче движения, то есть невозможность передачи движения в обратном направлении — от ведомого червячного колеса к ведущему червяку.

Недостатки червячных передач обусловлены большими скоростями скольжения

витков червяка по зубьям червячного колеса, а также значительными осевыми силами, действующими на валах передачи.

Недостатки червячных передач: 1) Низкий КПД и высокое тепловыделение; 2) повышенный износ и уменьшенный срок службы; 3) склонность к заеданию, что вызывает необходимость применения специальных антифрикционных материалов для изготовления зубчатого венца червяч-ного колеса и специальных видов смазки с антизадирными присадками.

Классификация червячных передач:

1. по направлению линии витка червяка –

1.1. правые

(при наблюдении с торца червяка и его вращении по часовой стрелке червяк вкручивается в пространство — уходит от наблюдателя);

1.2. левые

(при наблюдении с торца червяка и его вращении по часовой стрелке червяк выкручивается из пространства — идёт на наблюдателя);

2. по числу заходов червяка –

2.1. с однозаходным червяком, имеющим один гребень, расположенный по винтовой линии, наложенной на делительный цилиндр червяка;

2.2. с двух-, трёх-, четырёх-, многозаходным червяком, имеющим соответственно 2, 3, 4 или более одинаковых гребней расположенных по винтовой линии, наложенной на делительный цилиндр червяка;

3. по форме делительной поверхности червяка –

3.1. с цилиндрическим

червяком (образующая делительной поверхности – прямая линия);

3.2. с глобоидным

червяком (образующая делительной поверхности – дуга окружности, совпадающая с окружностью делительной поверхности червячного колеса);

4. по положению червяка относительно червячного колеса –

4.1. с нижним

расположением червяка;

4.2. с верхним

расположением червяка;

4.3. с боковым

расположением червяка;

5. по пространственному положению вала червячного колеса –

5.1. с горизонтальным

валом червячного колеса;


Рис. 6.2. Установка резца при нарезании архимедовых (1), конволютных (2) и эвольвентных (3) червяков.

5.2. с вертикальным

валом червячного колеса;

6. по форме боковой (рабочей) поверхности витка червяка (рис. 6.2) –

6.1. с архимедовым червяком, боковая поверхность его витков очерчена прямой линией в продольно-диамет­ральном сечении (обозначается ZA);

6.2. с конволютным червяком, боковая поверхность его витков очерчена прямой линией в нормальном к направлению витков сечении (обозначается ZN);

6.3. с эвольвентным червяком, боковая поверхность его витков в продольно-диаметральном сечении очерчена эвольвентой (обозначается ZI).

Эвольвентный червяк эквивалентен цилиндрическому эвольвентному косозубому колесу с числом зубьев, равным числу заходов червяка.

Форма боковой поверхности червяка мало влияет на работоспособность червячной передачи и, в основном, связана с выбранной технологией изготовления червяка (рис. 6.2).

Геометрия, кинематика и динамика ЧП.


Рис. 6.3. Размеры цилиндрического червяка

Геометрию, кинематику и динамику червячной передачи рассмотрим на примере передачи с архимедовым червяком.

Геометрические характеристики червячной передачи связаны между собой соотношениями, во многом аналогичными соотношениям зубчатых передач.

Основным стандартизо­ванным параметром червяч­ной передачи является модуль m (измеряется в мм), осевой для червяка и окружной (торцовый) для червячного колеса. Поскольку делительный диаметр червяка невозможно связать с числом его заходов z1 (витки червяка нарезаются вдоль его оси, а не по окружности, как у зубчатого колеса), для определения делительного диаметра червяка вводится специальный коэффициент диаметра червяка q, показывающий число модулей, укладывающихся в делительный диаметр.

Свои особенности имеет и геометрия венца червячного колеса. В виду того, что образующая делительной поверхности венца червячного колеса (рис. 6.4) имеет дугообразную форму и, следовательно, в разных точках разное удаление от оси вращения колеса, все основные размерные показатели (делительный диаметр, высота зуба и др.) измеряются в серединной плоскости, проходящей через геометрическую ось червяка.

Учитывая изложенное, модуль с делительными диаметрами червяка (рис. 6.3) и червячного колеса (рис. 6.4) связан соотношениями

. (6.1)

Расстояние, измеренное между одноименными поверхностями двух соседних гребней нарезки червяка, называютрасчетным шагом нарезки червяка

. Расчетный шаг нарезки червяка (размер
р на рис. 6.3) связан с модулем червячного зацепления соотношением, аналогичным таковому для зубчатого зацепления:
. (6.2)

Расстояние, измеренное между одноименными поверхностями двух соседних гребней, принадлежащих общей винтовой линии нарезки червяка, называютходом витка червяка

. Из определения следует, что расчетный шаг
p и ход витка pz связаны соотношением

Рис. 6.4. Параметры венца червячного колеса

. (6.3)

Высота головок витков червяка и зубьев червячного колеса также как и в зубчатом зацеплении равна модулю зацепления (ha1 = ha2 = m), а высота ножек с целью исключения возможности утыкания головки зуба в дно впадины, как и в конических передачах, на 20% больше модуля зацепления (hf1 = hf2 = 1,2m). Тогда диаметр вершин витков (внешний диаметр) червяка da1 (рис. 6.3) и диаметр вершин зубьев червячного колеса da2 (рис. 6.4) могут быть найдены по выражениям

; (6.4)

а диаметр впадин витков (внутренний диаметр) червяка df1 (рис. 6.3) и диаметр впадин зубьев червячного колеса df2 (рис. 6.4) — по выражениям

. (6.5)

Измеренный в плоскости осевого сечения угол a между касательной к боковой поверхности витков червяка и нормалью к оси его вращения для архимедовых червяков является величиной постоянной, стандартизован и равен 20°. Следовательно, угол между двумя касательными к противоположным боковым поверхностям одного витка (угол заострения гребня) составляет 2a или 40°.

Длина нарезанной части червяка b1 (рис. 6.3) зависит от числа его заходов и выбирается по эмпирической формуле

при числе витков червяка z1 = 1 и z1 = 2 ; (6.6)

а при числе витков червяка z1 = 4[3] . (6.7)

Отношение хода витка к длине делительной окружности червяка – есть величина тангенса угла подъёма g винтовой линии нарезки червяка

(6.8)

Особенностью червячного колеса (рис. 6.4) является то, что диаметр вершин зубьев da2 не самый большой его диаметр. Максимальный диаметр червячного колеса daM2 устанавливается в некоторой степени произвольно. Увеличение этого диаметра способствует увеличению площади контактной поверхности зубьев колеса, а следовательно, и снижению контактных напряжений на этой поверхности, возникающих в процессе работы передачи. Однако чрезмерное его возрастание приводит к заострению периферийных участков зуба и исключению их из передачи рабочих нагрузок вследствие повышенной гибкости. Поэтому максимальный диаметр зубьев червячного колеса daM2 имеет ограничение сверху по соотношению

. (6.9)

Ширину зубчатого венца червячного колеса b2 выбирают по стандартному ряду размеров. При этом размер b2 должен удовлетворять соотношению

при числе витков червяка z1 = 1 и z1 = 2 ; (6.10)

а при числе витков червяка z1 = 4 . (6.11)

При прочностных расчетах червячной передачи возникает потребность в знании условного угла 2d охвата витков червяка зубьями червячного колеса

(рис. 6.4). Этот угол определяют по точкам пересечения боковых (торцовых) поверхностей червячного колеса с условной окружностью, диаметр которой равен , следовательно

. (6.12)

Межосевое расстояние для несмещенной червячной передачи опреде­ляется по формуле

. (6.13)

Рис. 6.5. Схема скоростей в червячной передаче

В червячной передаче, в отличие от зубчатой, окружные скорости витков червяка v1 и зубьев червячного колеса v2 (рис. 6.5) различны как по величине, так и по направлению. Витки червяка при его вращении получают скорость v1, направленную по касательной к его начальной окружности, а зубья червячного колеса движутся совместно с винтовой линией параллельно оси червяка со скоростью v2. За один оборот червяка червячное колесо повернется на угол, охватывающий число зубьев колеса, равное числу заходов червяка. Эти простые наблюдения позволяют записать следующую зависимость для вычисления передаточного числа червячной передачи

. (6.14)

Геометрическая сумма скоростей v1 и v2 равна скорости относительного движения витков червяка по отношению к зубьям колеса. План скоростей, построенный для зацепления, позволяет записать следующие зависимости

. (6.15)

Таким образом, скорость скольжения витков червяка по зубьям червячного колеса является наибольшей по сравнению с тангенциальными скоростями движения витков червяка и зубьев червячного колеса.

Коэффициент полезного действия червячного зацепления можно вычислить как КПД винтовой кинематической пары:

при ведущем червяке ; (6.16)

а при ведущем червячном колесе ; (6.17)

где — угол трения в червячной кинематической паре, а f коэффициент трения для материалов витков червяка и зубчатого венца червячного колеса.

При g £ rhзо = 0 передача движения от червячного колеса к червяку становится невозможной – происходит самоторможение. Свойство самоторможения обратного движения широко используется в лебёдках и грузоподъёмных механизмах. Однако необходимо отметить, что у таких самотормозящихся механизмов и в прямом направлении передачи движения КПД невелик.

Рис. 6.6. Силы в червячной передаче

В червячной передаче сила Fn, действующая со стороны червяка, воспринимается, как правило, не одним, а несколькими зубьями. Однако, также как и в зубчатых передачах, при выполнении расчетов эту силу принято располагать в полюсе зацепления (рис. 6.6, а). Эту силу не трудно разложить по правилу параллелограмма на три взаимно перпендикулярных составляющих Ft1, Fr1 и Fa1. Далее, согласно третьему закону Ньютона устанавливаем, что (рис. 6.6, б)Ft2 = Fa1, Fa2 = Ft1 и Fr2 = Fr1.

Тангенциальные силы на червяке и червячном колесе наиболее удобно вычислить через вращающие моменты на соответствующих валах, тогда

(6.18)

и . (6.19)

Радиальные силы на червяке и колесе

. (6.20)

Материалы и изготовление ЧП.

Витки червяка и зубчатый венец червячного колеса должны обладать достаточной прочностью и составлять антифрикционную пару, обладающую высокой износостойкостью и сопротивляемостью заеданию в условиях больших скоростей скольжения при значительных нормальных силах между контактирующими поверхностями.

Для изготовления червяков применяют все три типа сталей, распространенных в машиностроении:

1. Качественные среднеуглеродистые стали марок 40, 45, 50. Из них изготавливают малоответственные червяки. Заготовку перед механической обработкой подвергают улучшающей термической обработке (HRCэ £ 36). Червяк точат на токарном станке с последующей ручной или механической шлифовкой и полировкой рабочих поверхностей витков.

2. Среднеуглеродистые легированныестали марок 40Х, 45Х, 40ХН, 40ХНМА, 35ХГСА. Из этих сталей изготавливают червяки ответственных передач. Улучшающей термообработке (HRCэ £ 45) подвергают деталь после предварительной обработки на токарном станке. После термообработки рабочие поверхности витков шлифуют на специальных червячно-шлифовальных станках или на токарном станке с применением специальной шлифовальной головки.

3. Мало- и среднеуглеродистые легированныестали марок 20Х, 12ХН3А, 25ХГТ, 38ХМЮА. Из этих сталей изготавливают червяки высоконагруженных передач, работающие в реверсивном режиме. Деталь, изготовленная с минимальным припуском под окончательную обработку, подвергается поверхностной химико-термической обработке (цементация, азотирование и т.п.) глубиной до 0,8 мм, после чего закаливается до высокой поверхностной твердости (HRCэ 55…65). Рабочая поверхность витков червяка шлифуется и полируется (иногда шевингуется).

Зубчатые венцы червячных колёс изготавливают чаще всего литьём из бронзы или чугуна.

Чугунный венец

(серые чугуны СЧ15, СЧ20 или ковкие чугуны КЧ15, КЧ20) может отливаться за одно целое с ободом червячного колеса при отливке последнего. Такие колеса применяются, как правило, в низкоскоростных открытых и закрытых передачах (
vs £ 2 м/с).
При средних скоростях скольжения (2 < vs £ 5 м/с) для изготовления зубчатых венцов червячных колес применяются безоловянистые бронзы

и латуни. Чаще всего для этой цели используются железоалюминиевые литейные бронзы (Бр А9Ж3Л, Бр А10Ж4Н4Л). Эти бронзы имеют высокую механическую прочность, но обладает пониженными антизадирными свойствами, поэтому её применяют в паре с червяками, имеющими шлифованную и полированную рабочую поверхность витков высокой твердости (HRC ³ 45).

В передачах с высокой скоростью скольжения (5 < vs £ 25 м/с) зубчатые венцы червячных колёс изготавливают из оловянистых бронз

(Бр О10Ф1, Бр О10Н1Ф1). Эти бронзы обладают пониженной прочностью по сравнению с безоловянистыми, но обладают хорошими антизадирными свойствами.

Бронзовые венцы червячных колёс обычно изготавливают отливкой в землю, в кокиль (металлическую форму) или центробежным литьём. При этом отливки, полученные центробежным литьём, имеют наилучшие прочностные характеристики.

Заготовка для зубчатого венца может быть отлита непосредственно на ободе червячного колеса, либо отливаться в виде отдельной детали, тогда венец выполняется насадным с закреплением его как от возможности проворота, так и от продольного смещения.

С целью выбора материала для изготовления зубчатого венца червячного колеса предварительно ожидаемую скорость скольжения vs можно определить по эмпирическому выражению

, (6.21)

где vs – скорость скольжения, м/с; n1 – частота вращения червяка, мин-1; T2 – вращающий момент на червячном колесе, Н×м.

В настоящей лекции изложены начальные сведения по конструкции, кинематике и динамике червячных передач, представлены основные материалы, используемые для изготовления червяков и зубчатых венцов червячных колес, а также некоторые технологические сведения по их изготовлению. Вопросы, связанные с проектным и проверочным расчетом червячных передач будут рассмотрены в дальнейшем.

Вопросы для самоконтроля:

1. Назовите основные признаки червячной передачи.

2. Почему червячные передачи называют зубчато-винтовыми.

3. Назовите достоинства червячных передач.

4. Назовите недостатки червячных передач, чем они обусловлены?

5. Назовите основные классификационные признаки червячных передач.

6. В чём различия между эвольвентным, конволютным и архимедовым червяками?

7. Чем является модуль в червячной передаче и как он связан с начальным (дели­тельным) диаметром червяка?

8. Какие размеры червяка называют шагом нарезки и ходом витка, у каких червяков, по вашему мнению, эти два размера совпадают?

9. Выразите высоту витков червяка и зубьев червячного колеса через модуль червяч­ной передачи.

10. Покажите связь диаметров впадин и диаметров выступов витков червяка и зубьев червячного колеса.

11. Как определить угол подъёма винтовой линии витков червяка?

12. Как назначаются максимальный диаметр и ширина зубчатого венца червячного колеса?

13. Что называют условным углом охвата витков червяка зубьями червячного колеса; как его величина связана с другими геометрическими параметрами передачи?

14. Возможно ли передаточное число червячной передачи выразить через начальные диаметры подвижных звеньев аналогично зубчатой передаче?

15. Какой показатель называют скоростью скольжения в червячной передаче и как он связан со скоростями движения витков червяка и зубьев червячного колеса?

16. От чего зависит коэффициент полезного действия червячного зацепления?

17. Что понимают под самоторможением червячной передачи?

18. Назовите составляющие силы, действующей на витки червяка в зацеплении, и равные им составляющие силы, действующей на зубья червячного колеса.

19. Почему элементы зубчатого зацепления выполняют, как правило, из одинаковых

20. материалов, а червячного из разных?

21. Какие основные критерии червячной передачи влияют на выбор материала для изготовления зубчатого венца червячного колеса?

é

Вопросы, изложенные в лекции:

1. Определение, классификация ЧП.

2. Геометрия, кинематика и динамика ЧП.

3. Материалы и изготовление ЧП.

Определение и классификация ЧП.

В предыдущих лекциях рассмотрены конструкция и параметры зубчатых передач с зацеплениями некоторых типов. В этих передачах в качестве подвижных звеньев фигурируют зубчатые колеса, сидящие на вращающихся валах. Кроме подобных зубчатых передач в технике получили широкое распространение передачи, имеющие зубчато-винтовое зацепление – червячные передачи

(механизмы натяжения гусениц БМП и танков, привод лебёдки БТР-80, главные передачи некоторых тяжелых грузовых автомобилей).

Червячная передача – это передача, два подвижных звена которой, червяк и червячное колесо, образуют совместно высшую зубчато-винтовую кинематическую пару, а с третьим, неподвижным звеном, низшие вращательные кинематические пары.

Рис. 6.1. Червячная передача: 1 –червяк; 2 –червячное колесо.

Как следует из определения, червячная передача обладает свойствами как зубчатой (червячное колесо на своем ободе несет зубчатый венец), так и винтовой (червяк имеет форму винта) передач. Червячная передача, также как и винтовая, характеризуется относительно высокими скоростями скольжения витков червяка по зубьям червячного колеса.

Достоинства червячных передач: 1) компактность и относительно небольшая масса конструкции; 2) возможность получения больших передаточных чисел в одной ступени – стандартные передачи u £ 80, специальные — u ³ 300; 3) высокая плавность и кинематическая точность; 4) низкий уровень шума и вибраций; 5) самоторможение при обратной передаче движения, то есть невозможность передачи движения в обратном направлении — от ведомого червячного колеса к ведущему червяку.

Недостатки червячных передач обусловлены большими скоростями скольжения

витков червяка по зубьям червячного колеса, а также значительными осевыми силами, действующими на валах передачи.

Недостатки червячных передач: 1) Низкий КПД и высокое тепловыделение; 2) повышенный износ и уменьшенный срок службы; 3) склонность к заеданию, что вызывает необходимость применения специальных антифрикционных материалов для изготовления зубчатого венца червяч-ного колеса и специальных видов смазки с антизадирными присадками.

Классификация червячных передач:

1. по направлению линии витка червяка –

1.1. правые

(при наблюдении с торца червяка и его вращении по часовой стрелке червяк вкручивается в пространство — уходит от наблюдателя);

1.2. левые

(при наблюдении с торца червяка и его вращении по часовой стрелке червяк выкручивается из пространства — идёт на наблюдателя);

2. по числу заходов червяка –

2.1. с однозаходным червяком, имеющим один гребень, расположенный по винтовой линии, наложенной на делительный цилиндр червяка;

2.2. с двух-, трёх-, четырёх-, многозаходным червяком, имеющим соответственно 2, 3, 4 или более одинаковых гребней расположенных по винтовой линии, наложенной на делительный цилиндр червяка;

3. по форме делительной поверхности червяка –

3.1. с цилиндрическим

червяком (образующая делительной поверхности – прямая линия);

3.2. с глобоидным

червяком (образующая делительной поверхности – дуга окружности, совпадающая с окружностью делительной поверхности червячного колеса);

4. по положению червяка относительно червячного колеса –

4.1. с нижним

расположением червяка;

4.2. с верхним

расположением червяка;

4.3. с боковым

расположением червяка;

5. по пространственному положению вала червячного колеса –

5.1. с горизонтальным

валом червячного колеса;

Рис. 6.2. Установка резца при нарезании архимедовых (1), конволютных (2) и эвольвентных (3) червяков.

5.2. с вертикальным

валом червячного колеса;

6. по форме боковой (рабочей) поверхности витка червяка (рис. 6.2) –

6.1. с архимедовым червяком, боковая поверхность его витков очерчена прямой линией в продольно-диамет­ральном сечении (обозначается ZA);

6.2. с конволютным червяком, боковая поверхность его витков очерчена прямой линией в нормальном к направлению витков сечении (обозначается ZN);

6.3. с эвольвентным червяком, боковая поверхность его витков в продольно-диаметральном сечении очерчена эвольвентой (обозначается ZI).

Эвольвентный червяк эквивалентен цилиндрическому эвольвентному косозубому колесу с числом зубьев, равным числу заходов червяка.

Форма боковой поверхности червяка мало влияет на работоспособность червячной передачи и, в основном, связана с выбранной технологией изготовления червяка (рис. 6.2).

Геометрия, кинематика и динамика ЧП.
Рис. 6.3. Размеры цилиндрического червяка

Геометрию, кинематику и динамику червячной передачи рассмотрим на примере передачи с архимедовым червяком.

Геометрические характеристики червячной передачи связаны между собой соотношениями, во многом аналогичными соотношениям зубчатых передач.

Основным стандартизо­ванным параметром червяч­ной передачи является модуль m (измеряется в мм), осевой для червяка и окружной (торцовый) для червячного колеса. Поскольку делительный диаметр червяка невозможно связать с числом его заходов z1 (витки червяка нарезаются вдоль его оси, а не по окружности, как у зубчатого колеса), для определения делительного диаметра червяка вводится специальный коэффициент диаметра червяка q, показывающий число модулей, укладывающихся в делительный диаметр.

Свои особенности имеет и геометрия венца червячного колеса. В виду того, что образующая делительной поверхности венца червячного колеса (рис. 6.4) имеет дугообразную форму и, следовательно, в разных точках разное удаление от оси вращения колеса, все основные размерные показатели (делительный диаметр, высота зуба и др.) измеряются в серединной плоскости, проходящей через геометрическую ось червяка.

Учитывая изложенное, модуль с делительными диаметрами червяка (рис. 6.3) и червячного колеса (рис. 6.4) связан соотношениями

. (6.1)

Расстояние, измеренное между одноименными поверхностями двух соседних гребней нарезки червяка, называютрасчетным шагом нарезки червяка

. Расчетный шаг нарезки червяка (размер
р на рис. 6.3) связан с модулем червячного зацепления соотношением, аналогичным таковому для зубчатого зацепления:
. (6.2)

Расстояние, измеренное между одноименными поверхностями двух соседних гребней, принадлежащих общей винтовой линии нарезки червяка, называютходом витка червяка

. Из определения следует, что расчетный шаг
p и ход витка pz связаны соотношением

Рис. 6.4. Параметры венца червячного колеса

. (6.3)

Высота головок витков червяка и зубьев червячного колеса также как и в зубчатом зацеплении равна модулю зацепления (ha1 = ha2 = m), а высота ножек с целью исключения возможности утыкания головки зуба в дно впадины, как и в конических передачах, на 20% больше модуля зацепления (hf1 = hf2 = 1,2m). Тогда диаметр вершин витков (внешний диаметр) червяка da1 (рис. 6.3) и диаметр вершин зубьев червячного колеса da2 (рис. 6.4) могут быть найдены по выражениям

; (6.4)

а диаметр впадин витков (внутренний диаметр) червяка df1 (рис. 6.3) и диаметр впадин зубьев червячного колеса df2 (рис. 6.4) — по выражениям

. (6.5)

Измеренный в плоскости осевого сечения угол a между касательной к боковой поверхности витков червяка и нормалью к оси его вращения для архимедовых червяков является величиной постоянной, стандартизован и равен 20°. Следовательно, угол между двумя касательными к противоположным боковым поверхностям одного витка (угол заострения гребня) составляет 2a или 40°.

Длина нарезанной части червяка b1 (рис. 6.3) зависит от числа его заходов и выбирается по эмпирической формуле

при числе витков червяка z1 = 1 и z1 = 2 ; (6.6)

а при числе витков червяка z1 = 4[3] . (6.7)

Отношение хода витка к длине делительной окружности червяка – есть величина тангенса угла подъёма g винтовой линии нарезки червяка

(6.8)

Особенностью червячного колеса (рис. 6.4) является то, что диаметр вершин зубьев da2 не самый большой его диаметр. Максимальный диаметр червячного колеса daM2 устанавливается в некоторой степени произвольно. Увеличение этого диаметра способствует увеличению площади контактной поверхности зубьев колеса, а следовательно, и снижению контактных напряжений на этой поверхности, возникающих в процессе работы передачи. Однако чрезмерное его возрастание приводит к заострению периферийных участков зуба и исключению их из передачи рабочих нагрузок вследствие повышенной гибкости. Поэтому максимальный диаметр зубьев червячного колеса daM2 имеет ограничение сверху по соотношению

. (6.9)

Ширину зубчатого венца червячного колеса b2 выбирают по стандартному ряду размеров. При этом размер b2 должен удовлетворять соотношению

при числе витков червяка z1 = 1 и z1 = 2 ; (6.10)

а при числе витков червяка z1 = 4 . (6.11)

При прочностных расчетах червячной передачи возникает потребность в знании условного угла 2d охвата витков червяка зубьями червячного колеса

(рис. 6.4). Этот угол определяют по точкам пересечения боковых (торцовых) поверхностей червячного колеса с условной окружностью, диаметр которой равен , следовательно

. (6.12)

Межосевое расстояние для несмещенной червячной передачи опреде­ляется по формуле

. (6.13)

Рис. 6.5. Схема скоростей в червячной передаче

В червячной передаче, в отличие от зубчатой, окружные скорости витков червяка v1 и зубьев червячного колеса v2 (рис. 6.5) различны как по величине, так и по направлению. Витки червяка при его вращении получают скорость v1, направленную по касательной к его начальной окружности, а зубья червячного колеса движутся совместно с винтовой линией параллельно оси червяка со скоростью v2. За один оборот червяка червячное колесо повернется на угол, охватывающий число зубьев колеса, равное числу заходов червяка. Эти простые наблюдения позволяют записать следующую зависимость для вычисления передаточного числа червячной передачи

. (6.14)

Геометрическая сумма скоростей v1 и v2 равна скорости относительного движения витков червяка по отношению к зубьям колеса. План скоростей, построенный для зацепления, позволяет записать следующие зависимости

. (6.15)

Таким образом, скорость скольжения витков червяка по зубьям червячного колеса является наибольшей по сравнению с тангенциальными скоростями движения витков червяка и зубьев червячного колеса.

Коэффициент полезного действия червячного зацепления можно вычислить как КПД винтовой кинематической пары:

при ведущем червяке ; (6.16)

а при ведущем червячном колесе ; (6.17)

где — угол трения в червячной кинематической паре, а f коэффициент трения для материалов витков червяка и зубчатого венца червячного колеса.

При g £ rhзо = 0 передача движения от червячного колеса к червяку становится невозможной – происходит самоторможение. Свойство самоторможения обратного движения широко используется в лебёдках и грузоподъёмных механизмах. Однако необходимо отметить, что у таких самотормозящихся механизмов и в прямом направлении передачи движения КПД невелик.

Рис. 6.6. Силы в червячной передаче

В червячной передаче сила Fn, действующая со стороны червяка, воспринимается, как правило, не одним, а несколькими зубьями. Однако, также как и в зубчатых передачах, при выполнении расчетов эту силу принято располагать в полюсе зацепления (рис. 6.6, а). Эту силу не трудно разложить по правилу параллелограмма на три взаимно перпендикулярных составляющих Ft1, Fr1 и Fa1. Далее, согласно третьему закону Ньютона устанавливаем, что (рис. 6.6, б)Ft2 = Fa1, Fa2 = Ft1 и Fr2 = Fr1.

Тангенциальные силы на червяке и червячном колесе наиболее удобно вычислить через вращающие моменты на соответствующих валах, тогда

(6.18)

и . (6.19)

Радиальные силы на червяке и колесе

. (6.20)

Материалы и изготовление ЧП.

Витки червяка и зубчатый венец червячного колеса должны обладать достаточной прочностью и составлять антифрикционную пару, обладающую высокой износостойкостью и сопротивляемостью заеданию в условиях больших скоростей скольжения при значительных нормальных силах между контактирующими поверхностями.

Для изготовления червяков применяют все три типа сталей, распространенных в машиностроении:

1. Качественные среднеуглеродистые стали марок 40, 45, 50. Из них изготавливают малоответственные червяки. Заготовку перед механической обработкой подвергают улучшающей термической обработке (HRCэ £ 36). Червяк точат на токарном станке с последующей ручной или механической шлифовкой и полировкой рабочих поверхностей витков.

2. Среднеуглеродистые легированныестали марок 40Х, 45Х, 40ХН, 40ХНМА, 35ХГСА. Из этих сталей изготавливают червяки ответственных передач. Улучшающей термообработке (HRCэ £ 45) подвергают деталь после предварительной обработки на токарном станке. После термообработки рабочие поверхности витков шлифуют на специальных червячно-шлифовальных станках или на токарном станке с применением специальной шлифовальной головки.

3. Мало- и среднеуглеродистые легированныестали марок 20Х, 12ХН3А, 25ХГТ, 38ХМЮА. Из этих сталей изготавливают червяки высоконагруженных передач, работающие в реверсивном режиме. Деталь, изготовленная с минимальным припуском под окончательную обработку, подвергается поверхностной химико-термической обработке (цементация, азотирование и т.п.) глубиной до 0,8 мм, после чего закаливается до высокой поверхностной твердости (HRCэ 55…65). Рабочая поверхность витков червяка шлифуется и полируется (иногда шевингуется).

Зубчатые венцы червячных колёс изготавливают чаще всего литьём из бронзы или чугуна.

Чугунный венец

(серые чугуны СЧ15, СЧ20 или ковкие чугуны КЧ15, КЧ20) может отливаться за одно целое с ободом червячного колеса при отливке последнего. Такие колеса применяются, как правило, в низкоскоростных открытых и закрытых передачах (
vs £ 2 м/с).
При средних скоростях скольжения (2 < vs £ 5 м/с) для изготовления зубчатых венцов червячных колес применяются безоловянистые бронзы

и латуни. Чаще всего для этой цели используются железоалюминиевые литейные бронзы (Бр А9Ж3Л, Бр А10Ж4Н4Л). Эти бронзы имеют высокую механическую прочность, но обладает пониженными антизадирными свойствами, поэтому её применяют в паре с червяками, имеющими шлифованную и полированную рабочую поверхность витков высокой твердости (HRC ³ 45).

В передачах с высокой скоростью скольжения (5 < vs £ 25 м/с) зубчатые венцы червячных колёс изготавливают из оловянистых бронз

(Бр О10Ф1, Бр О10Н1Ф1). Эти бронзы обладают пониженной прочностью по сравнению с безоловянистыми, но обладают хорошими антизадирными свойствами.

Бронзовые венцы червячных колёс обычно изготавливают отливкой в землю, в кокиль (металлическую форму) или центробежным литьём. При этом отливки, полученные центробежным литьём, имеют наилучшие прочностные характеристики.

Заготовка для зубчатого венца может быть отлита непосредственно на ободе червячного колеса, либо отливаться в виде отдельной детали, тогда венец выполняется насадным с закреплением его как от возможности проворота, так и от продольного смещения.

С целью выбора материала для изготовления зубчатого венца червячного колеса предварительно ожидаемую скорость скольжения vs можно определить по эмпирическому выражению

, (6.21)

где vs – скорость скольжения, м/с; n1 – частота вращения червяка, мин-1; T2 – вращающий момент на червячном колесе, Н×м.

В настоящей лекции изложены начальные сведения по конструкции, кинематике и динамике червячных передач, представлены основные материалы, используемые для изготовления червяков и зубчатых венцов червячных колес, а также некоторые технологические сведения по их изготовлению. Вопросы, связанные с проектным и проверочным расчетом червячных передач будут рассмотрены в дальнейшем.

Вопросы для самоконтроля:

1. Назовите основные признаки червячной передачи.

2. Почему червячные передачи называют зубчато-винтовыми.

3. Назовите достоинства червячных передач.

4. Назовите недостатки червячных передач, чем они обусловлены?

5. Назовите основные классификационные признаки червячных передач.

6. В чём различия между эвольвентным, конволютным и архимедовым червяками?

7. Чем является модуль в червячной передаче и как он связан с начальным (дели­тельным) диаметром червяка?

8. Какие размеры червяка называют шагом нарезки и ходом витка, у каких червяков, по вашему мнению, эти два размера совпадают?

9. Выразите высоту витков червяка и зубьев червячного колеса через модуль червяч­ной передачи.

10. Покажите связь диаметров впадин и диаметров выступов витков червяка и зубьев червячного колеса.

11. Как определить угол подъёма винтовой линии витков червяка?

12. Как назначаются максимальный диаметр и ширина зубчатого венца червячного колеса?

13. Что называют условным углом охвата витков червяка зубьями червячного колеса; как его величина связана с другими геометрическими параметрами передачи?

14. Возможно ли передаточное число червячной передачи выразить через начальные диаметры подвижных звеньев аналогично зубчатой передаче?

15. Какой показатель называют скоростью скольжения в червячной передаче и как он связан со скоростями движения витков червяка и зубьев червячного колеса?

16. От чего зависит коэффициент полезного действия червячного зацепления?

17. Что понимают под самоторможением червячной передачи?

18. Назовите составляющие силы, действующей на витки червяка в зацеплении, и равные им составляющие силы, действующей на зубья червячного колеса.

19. Почему элементы зубчатого зацепления выполняют, как правило, из одинаковых

20. материалов, а червячного из разных?

21. Какие основные критерии червячной передачи влияют на выбор материала для изготовления зубчатого венца червячного колеса?

é

Виды червячных редукторов

Червячные редукторы могут существенно отличаться в зависимости от области применения механизма.

Основные отличия, которые могут использоваться в конструкции:

  • Разное число заходов;
  • Материал детали;
  • Направление резьбы;
  • Профиль резьбы;
  • Типами применяемого винта.

Данные отличия могут присутствовать в различных сочетаниях. Какие виды червячных редукторов использовать решает инженер на стадии проектирования и разработки устройств и механизмов, использующих такие типы передачи крутящего момента.

Преимущества червячных редукторов и построенных на них приводов:

1. Поскольку входной и выходной валы червячного редуктора скрещиваются, привод на его основе обычно лучше компонуется в машине, занимая меньше места по сравнению с цилиндрическим редуктором (речь идет о редукторах с эквивалентными передаточным числом и передаваемой мощностью).

2.Передаточное число червячной пары может достигать 1:110 (в специальных случаях — ещё больше). Таким образом, червячная передача обладает гораздо большим потенциалом снижения частоты вращения и повышения крутящего момента по сравнению с другими видами передач. Достижение передаточных чисел такого порядка с использованием цилиндрических передач возможно только в трёхступенчатом редукторе (или в планетарном). В червячном для этого может быть использована только одна ступень. Это обстоятельство обуславливает относительную простоту и дешевизну червячных редукторов по сравнению с цилиндрическими (опять же речь идёт о сравнимых передаточных числах и передаваемых мощностях). Оборотной стороной этого преимущества, однако, является снижение КПД червячной передачи при увеличении её передаточного числа, об этом подробнее — см. раздел «недостатки».

3. Низкий уровень шума передачи, определяющийся особенностями зацепления, позволяет использовать червячные редукторы в машинах с высокими требованиями к бесшумности привода. Здесь, однако, нельзя забывать о шумах, производимых двигателями и приводимыми в движение механизмами.

4. Плавность хода червячной передачи. Благодаря особенностям работы червячного зацепления червячные редукторы обладают большей плавностью хода по сравнению с цилиндрическими.

5. Уникальное свойство червячной передачи – «самоторможение» (другой термин, обозначающий это явление – «отсутствие обратимости»). Суть его в том, что при отсутствии вращения ведущего вала (червяка) ведомый вал затормаживается, и его невозможно провернуть. Это свойство начинает проявляться при передаточных числах от 35 и выше. Более корректно было бы здесь говорить не о передаточном числе, а об угле подъёма червяка, при уменьшении которого в определённый момент возникает самоторможение. Полное самоторможение достигается в передаче, в которой угол подъёма винтовой линии червяка равен или меньше 3.5°. Однако производители редукторов далеко не всегда предоставляют информацию об этом параметре в своих каталогах, и разработчикам приходится оперировать именно передаточными числами. Описанное свойство, в зависимости от области применения редуктора, может быть как достоинством, так и недостатком. Например, было бы конструкторской ошибкой применять червячный редуктор в приводе, скажем, закаточного устройства, при заправке которого требуется вручную поворачивать бобину с закатываемым листовым материалом, так как червячный редуктор даже с передаточным отношением меньше 25 довольно тяжело провернуть за ведомый вал. Наоборот, применение червячного редуктора (с большим передаточным числом червячной пары) в приводе подъёмника позволяет во многих случаях отказаться от установки дополнительного тормозного устройства.

6. Существуют исполнения червячных редукторов с полым выходным валом. Эти варианты редукторов (называемые также “насадными”) позволяют устанавливать редукторы непосредственно на валы исполнительных механизмов без применения соединительных муфт или дополнительных механических передач. Такая установка в сочетании с применением так называемых “реактивных штанг” или фланцевых исполнений редуктора упрощает конструкцию и уменьшает габарит привода:

Описанным преимуществом могут обладать не только червячные редукторы, но и другие типы редукторов, за исключением, пожалуй, соосных цилиндрических, где такая установка невозможна из-за их конструктивных особенностей. Здесь следует отметить, что иногда отсутствие предохранительной муфты между выходным валом редуктора и валом приводимого в движение механизма может привести к поломке редуктора из-за приложения нештатной нагрузки к выходному валу, превышающей номинальный выходной момент редуктора. В таких случаях задача конструктора – либо обеспечить отсутствие вероятности приложения таких нагрузок, либо защитить от них привод, например, с помощью муфты.

Сказанное в большей степени относится именно к червячным редукторам из-за их самоторможения.

Проектирование червячного редуктора

Смастерить червячный редуктор своими руками практически невозможно. Расчёт червячного механизма должен осуществляться квалифицированным специалистом. Когда чертёж будет сделан, все детали по нему изготавливаются только из материалов надлежащего качества, иначе зубчатый механизм может выйти из строя после непродолжительной работы. Сборка червячного редуктора, также должна осуществляться опытным мастером. Несоблюдение этого правила может значительно снизить эксплуатационный ресурс детали, ведь кроме правильной установки валов, понадобится тщательная регулировка червячного механизма.

Если необходимо применение червячного редуктора для того чтобы установить самодельный механизм по передаче крутящего момента, то в это случае лучше использовать уже готовые б/у изделия от техники, в которой используется подобный вид передачи крутящего момента. В том случае, когда осуществляется самостоятельная разработка новых устройств, которые будут запатентованы, проектирование червячного редуктора следует заказать в конструкторском бюро, занимающемся подобными разработками.

Принцип работы

Основой всего передаточного механизма является червеобразный ведущий винт, в «честь» которого данные типы редукторов и получили своё название. Червячный винт взаимодействует с шестерней, осевой вал которой расположен под прямым углом. В результате такой сцепки происходит трансформация высокой скорости вращения входного вала с низким крутящим моментом, на вращение выходного вала с небольшой частотой, но значительно большим усилием. Компоновка червячного редуктора может быть различной. Если вал червячного редуктора вращается со скоростью ниже 5 м/с, то червяк располагается снизу, если скорость выше — то устанавливается редуктор с верхним червяком.

Большинство механизмов этого типа используются с одной передаточной ступенью, но иногда для регулирования соотношения может применяться двухступенчатый червячный редуктор.

Если скорость вращения вала более 10 м/с подшипники и гипоидные передачи должны смазываться под давлением. Если мотор тихоходный, то достаточно естественной циркуляции масла при вращении передачи.

Масло для червячных редукторов должно быть высокой вязкости, иначе процесс износа наиболее нагруженных частей редуктора значительно ускорится.

Описание конструкции

Редукторы с червячным зацеплением — один из наиболее распространённых типов редукторов. Червячная передача представляет собой зацепление червяка с червячным колесом. Червяк – это винт с нарезанной на нём резьбой, по профилю близкой к трапецеидальной. Червячное колесо — косозубое зубчатое колесо со специальным профилем зубьев. При вращении червяка витки резьбы перемещаются вдоль его оси и толкают в этом направлении зубья червячного колеса. Ось червяка скрещивается под прямым углом с осью червячного колеса, расстояние между ними — определяющий размер редуктора. В редукторах российского производства этот размер является составной частью обозначения редуктора и определяет его габарит. Например, Ч-80 — червячный одноступенчатый редуктор с межосевым расстоянием 80 мм, а Ч-100 соответственно имеет межосевое расстояние 100 мм.

Рулевое управление

Он используется в автомобиле не только в мостах, но и в рулевой системе. На самом деле жидкостный рулевой редуктор – это старейшая система, которая прошла множество изменений, но технический принцип ее остался общим.

Рулевой редуктор в автомобиле служит для того, чтобы было легче крутить руль даже на автомобиле без усилителя руля.

Рулевой редуктор имеет ряд преимуществ, главным из которых является большое отношение передачи энергии. Можно сказать, что к достоинствам относится низкий шум работы редуктора и плавность хода. Рулевой редуктор также обладает и недостатками, главным из которых является быстрый износ цепного механизма и обильное выделение тепла. Приводом для рулевого преобразователя энергии служит рулевое колесо.

Система смазки редуктора

Каждый такой агрегат автомобиля имеет систему смазки. Масло под давлением подает на подшипники и цепной механизм. Помимо своей прямой обязанности система смазки охлаждает и выносит лишние элементы износа из корпуса редуктора, которые смогут привести в негодность цепные шестеренки. Эти элементы выходят из системы с маслом и задерживаются фильтром.

Чтобы масло не смогло вытекать из корпуса редуктора, требуются специальные сальники. Специальные сальники в автомобиле есть не только в этой системе. Эти сальники есть везде, где требуется герметичность. Для того, чтобы сальники создавали герметичность, сальники нужно правильно установить. Замена сальников является такой же сложной процедурой, как и ремонт редуктора. Первой причиной того, что требуется заменить сальники, является след масла на корпусе.

Ремонт редуктора

Несложный ремонт червячного редуктора можно осуществить собственными силами. Если мотор и привод объединены в одном корпусе, то следует аккуратно разобрать механизм.

Часть общего картера, в которой находится привод, также подлежит разбору. Если конструкция червячного привода изготовлена под высокоскоростной мотор, то, прежде чем приступать к разбору редуктора, необходимо слить трансмиссионное масло из корпуса.

В редукторе этого типа применяются высококачественные подшипники, поэтому наиболее часто необходимость ремонте возникает если шестерня и червяк изношены свыше предельных значений. Рабочая пара всегда подлежит одновременной замене на полный ремкомплект, который прежде чем поступить в торговую сеть, должен быть правильно подобран и испытан на специальном стенде.

Если износ червячной пары незначительный, то зазор можно ликвидировать, используя специальные шайбы-прокладки на ведомом валу.

Конструкция червячного редуктора также позволяет осуществить регулировку зацепления шестерни с червяком без разбора корпуса. Для этой цели используется болт, который встроен в корпус. Если имеется чертёж устройства, то можно без труда определить, где шестерня регулируется. Если чертёж отсутствует, то косвенным признаком регулировочного болта, будет наличие на нём контргайки, которая используется для фиксации отрегулированного зазора между червяком и зубчатым колесом. Крайне редко подшипники редуктора требуют замены. Обычно привод оснащается качественными шарикоподшипниками, которые не требуют замены или ремонта в течение всего эксплуатационного срока детали. Подшипники могут быть испорчены только в том случае, когда привод долгое время использовался без смазки или с применением некачественных смазочных материалов.

Типы рулевых механизмов

Устройство рулевого механизма различается в зависимости от способа преобразования крутящего момента. По этому параметру выделяют червячный и реечный виды механизмов. Существует еще винтовой тип, принцип работы которого схож с червячной передачей, но он имеет больший КПД и реализует большее усилие.

Червячный рулевой механизм: устройство, принцип работы, преимущества и недостатки

Этот рулевой механизм является одним из «устаревших» устройств. Им оснащены практически все модели отечественной «классики». Механизм применяется на автомобилях с повышенной проходимостью с зависимой подвеской управляемых колес, а также в легких грузовых автомобилях и автобусах.


Схема червячного редуктора

Конструктивно устройство состоит из следующих элементов:

  • рулевой вал;
  • передача «червяк-ролик»;
  • картер;
  • рулевая сошка.

Пара «червяк-ролик» находится в постоянном зацеплении. Глобоидальный червяк представляет собой нижнюю часть рулевого вала, а ролик закреплен на валу сошки. При вращении руля ролик перемещается по зубьям червяка, благодаря чему вал рулевой сошки также поворачивается. Результатом такого взаимодействия является передача поступательных движений на привод и колеса.

Рулевой механизм червячного типа имеет следующие преимущества:

  • возможность поворота колес на больший угол;
  • гашение ударов от дорожных неровностей;
  • передача больших усилий;
  • обеспечение лучшей маневренности машины.

Изготовление конструкции достаточно сложное и дорогое – в этом главный ее минус. Рулевое управление с таким механизмом состоит из множества соединений, периодическая регулировка которых просто необходима. В противном случае придется заменять поврежденные элементы.

Реечный рулевой механизм: устройство, принцип работы, преимущества и недостатки


Механизм “шестерня-рейка”
Рулевой механизм реечного типа считается более современным и удобным. В отличие от предыдущего узла, это устройство применимо на транспортных средствах с независимой подвеской управляемых колес.

В реечный рулевой механизм входят следующие элементы:

  • корпус механизма;
  • передача «шестерня-рейка».

Шестерня устанавливается на рулевом валу и находится в постоянном зацеплении с рейкой. В процессе вращения рулевого колеса рейка перемещается в горизонтальной плоскости. В результате соединенные с ней тяги рулевого привода также перемещаются и приводят в движение управляемые колеса.

Механизм «шестерня-рейка» отличается простотой конструкции и высоким КПД. К ее преимуществам также можно отнести:

  • меньшее количество шарниров и тяг;
  • компактность и невысокая цена;
  • надежность и простота конструкции.

С другой стороны, редуктор этого типа чувствителен к ударам от неровностей дороги – любой толчок от колес передастся на руль.

Винтовой редуктор


Устройство винтового редуктора
Особенностью этого механизма является соединение с помощью шариков винта и гайки. За счет чего наблюдается меньшее трение и износ элементов. Механизм состоит из следующих элементов:

  • вал рулевого колеса с винтом
  • гайка, перемещаемая по винту
  • зубчатая рейка, нарезанная на гайке
  • зубчатый сектор, с которым соединена рейка
  • рулевая сошка

Винтовой рулевой механизм применяется в автобусах, тяжелых грузовых автомобилях и в некоторых легковых автомобилях представительского класса.

https://www.youtube.com/watch?v=5rMIudOvxeY

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]